
## Tiancong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498479/publications.pdf Version: 2024-02-01



TIANCONC

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for<br>magnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology,<br>2022, 14, e1740.       | 6.1  | 60        |
| 2  | Anchoring Group-Mediated Radiolabeling of Inorganic Nanoparticles─A Universal Method for<br>Constructing Nuclear Medicine Imaging Nanoprobes. ACS Applied Materials & Interfaces, 2022, 14,<br>8838-8846.                 | 8.0  | 19        |
| 3  | An APNâ€Activated Chemiluminescent Probe for Imageâ€Guided Surgery of Malignant Tumors. Advanced<br>Optical Materials, 2022, 10, .                                                                                        | 7.3  | 14        |
| 4  | Quantitative Mapping of Glutathione within Intracranial Tumors through Interlocked MRI Signals of a Responsive Nanoprobe. Angewandte Chemie - International Edition, 2021, 60, 8130-8138.                                 | 13.8 | 57        |
| 5  | Recent Advances in Renal Clearable Inorganic Nanoparticles for Cancer Diagnosis. Particle and<br>Particle Systems Characterization, 2021, 38, 2000270.                                                                    | 2.3  | 8         |
| 6  | Quantitative Mapping of Glutathione within Intracranial Tumors through Interlocked MRI Signals of a Responsive Nanoprobe. Angewandte Chemie, 2021, 133, 8211-8219.                                                        | 2.0  | 6         |
| 7  | A Cyclodextrinâ€Hosted Ir(III) Complex for Ratiometric Mapping of Tumor Hypoxia In Vivo. Advanced<br>Science, 2021, 8, 2004044.                                                                                           | 11.2 | 22        |
| 8  | A Pretargeting Strategy Enabled by Bioorthogonal Reactions Towards Advanced Nuclear Medicines:<br>Application and Perspective. Chemical Research in Chinese Universities, 2021, 37, 870-879.                              | 2.6  | 2         |
| 9  | Biodegradable Inorganic Nanoparticles for Cancer Theranostics: Insights into the Degradation<br>Behavior. Bioconjugate Chemistry, 2020, 31, 315-331.                                                                      | 3.6  | 82        |
| 10 | Doping Lanthanide Nanocrystals With Non-lanthanide Ions to Simultaneously Enhance Up- and<br>Down-Conversion Luminescence. Frontiers in Chemistry, 2020, 8, 832.                                                          | 3.6  | 21        |
| 11 | An MRI contrast agent based on a zwitterionic metal-chelating polymer for hepatorenal angiography<br>and tumor imaging. Journal of Materials Chemistry B, 2020, 8, 6956-6963.                                             | 5.8  | 24        |
| 12 | Metformin-Induced Stromal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic<br>Nanoparticles for Pancreatic Cancer Targeted Therapy. Journal of the American Chemical Society,<br>2020, 142, 4944-4954. | 13.7 | 153       |
| 13 | Nanoparticles weaponized with builtâ€in functions for imagingâ€guided cancer therapy. View, 2020, 1, e19.                                                                                                                 | 5.3  | 35        |
| 14 | Self-Illuminating Agents for Deep-Tissue Optical Imaging. Frontiers in Bioengineering and Biotechnology, 2019, 7, 326.                                                                                                    | 4.1  | 23        |
| 15 | Quantitatively Visualizing Tumor-Related Protease Activity <i>in Vivo</i> Using a Ratiometric Photoacoustic Probe. Journal of the American Chemical Society, 2019, 141, 3265-3273.                                        | 13.7 | 123       |
| 16 | Coordinatively Unsaturated Fe <sup>3+</sup> Based Activatable Probes for Enhanced MRI and Therapy of Tumors. Angewandte Chemie - International Edition, 2019, 58, 11088-11096.                                            | 13.8 | 143       |
| 17 | Upconversion luminescence mediated photodynamic therapy through hydrophilically engineered porphyrin. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107551.                                    | 3.6  | 9         |
| 18 | Coordinatively Unsaturated Fe 3+ Based Activatable Probes for Enhanced MRI and Therapy of Tumors.<br>Angewandte Chemie, 2019, 131, 11205-11213.                                                                           | 2.0  | 18        |

Tiancong

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Rational Design and Synthesis of a Metalloproteinase-Activatable Probe for Dual-Modality Imaging of<br>Metastatic Lymph Nodes in Vivo. Journal of Organic Chemistry, 2019, 84, 6126-6133.                                         | 3.2  | 25        |
| 20 | Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nature Communications, 2019, 10, 1087.                                                      | 12.8 | 126       |
| 21 | Emitting/Sensitizing Ions Spatially Separated Lanthanide Nanocrystals for Visualizing Tumors<br>Simultaneously through Up―and Down onversion Nearâ€Infrared II Luminescence In Vivo. Small, 2019, 15,<br>e1905344.                | 10.0 | 41        |
| 22 | Timely Visualization of the Collaterals Formed during Acute Ischemic Stroke with<br>Fe <sub>3</sub> O <sub>4</sub> Nanoparticleâ€based MR Imaging Probe. Small, 2018, 14, e1800573.                                               | 10.0 | 24        |
| 23 | Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications.<br>Biomaterials Science, 2018, 6, 726-745.                                                                                          | 5.4  | 121       |
| 24 | Dual-Ratiometric Target-Triggered Fluorescent Probe for Simultaneous Quantitative Visualization of Tumor Microenvironment Protease Activity and pH <i>in Vivo</i> . Journal of the American Chemical Society, 2018, 140, 211-218. | 13.7 | 207       |
| 25 | Biodegradable Nanoagents with Short Biological Halfâ€Life for SPECT/PAI/MRI Multimodality Imaging<br>and PTT Therapy of Tumors. Small, 2018, 14, 1702700.                                                                         | 10.0 | 51        |
| 26 | Detection of lymph node metastasis with near-infrared upconversion luminescent nanoprobes.<br>Nanoscale, 2018, 10, 21772-21781.                                                                                                   | 5.6  | 28        |
| 27 | Ultra-small nanocluster mediated synthesis of Nd 3+ -doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature. Biomaterials, 2018, 175, 30-43.                  | 11.4 | 81        |
| 28 | "Smart―Nanoprobes for Visualization of Tumor Microenvironments. Advanced Healthcare Materials,<br>2018, 7, e1800391.                                                                                                              | 7.6  | 47        |
| 29 | A Novel Histochemical Staining Approach for Rareâ€Earthâ€Based Nanoprobes. Advanced Therapeutics, 2018, 1, 1800005.                                                                                                               | 3.2  | 11        |
| 30 | MRI Probes: Timely Visualization of the Collaterals Formed during Acute Ischemic Stroke with<br>Fe <sub>3</sub> O <sub>4</sub> Nanoparticleâ€based MR Imaging Probe (Small 23/2018). Small, 2018, 14,<br>1870108.                 | 10.0 | 6         |
| 31 | Molecular Imaging of Vulnerable Atherosclerotic Plaques <i>in Vivo</i> with Osteopontin-Specific Upconversion Nanoprobes. ACS Nano, 2017, 11, 1816-1825.                                                                          | 14.6 | 91        |
| 32 | Tumor Microenvironmentâ€īriggered Aggregation of Antiphagocytosis <sup>99m</sup> Tc‣abeled<br>Fe <sub>3</sub> O <sub>4</sub> Nanoprobes for Enhanced Tumor Imaging In Vivo. Advanced Materials,<br>2017, 29, 1701095.             | 21.0 | 162       |
| 33 | Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Mikrochimica Acta, 2017, 184, 203-210.                                             | 5.0  | 102       |
| 34 | The Yin and Yang of coordinating co-solvents in the size-tuning of Fe <sub>3</sub> O <sub>4</sub><br>nanocrystals through flow synthesis. Nanoscale, 2017, 9, 18609-18612.                                                        | 5.6  | 14        |
| 35 | MRI/optical dual-modality imaging of vulnerable atherosclerotic plaque with an osteopontin-targeted probe based on Fe 3 O 4 nanoparticles. Biomaterials, 2017, 112, 336-345.                                                      | 11.4 | 71        |
| 36 | pHâ€Responsive Fe(III)–Gallic Acid Nanoparticles for In Vivo Photoacousticâ€Imagingâ€Guided Photothermal<br>Therapy. Advanced Healthcare Materials, 2016, 5, 772-780.                                                             | 7.6  | 94        |

TIANCONG

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Small is Smarter: Nano MRI Contrast Agents – Advantages and Recent Achievements. Small, 2016, 12,<br>556-576.                                                                                                                                          | 10.0 | 147       |
| 38 | In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nature Communications, 2016, 7, 10432.                                                                                          | 12.8 | 376       |
| 39 | Differently sized magnetic/upconversion luminescent NaGdF <sub>4</sub> :Yb,Er nanocrystals: flow synthesis and solvent effects. Chemical Communications, 2016, 52, 5872-5875.                                                                          | 4.1  | 28        |
| 40 | Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes. Nanoscale, 2016, 8, 12579-12587.                                                                                                                 | 5.6  | 36        |
| 41 | Protease-Activated Ratiometric Fluorescent Probe for pH Mapping of Malignant Tumors. ACS Nano, 2015, 9, 3199-3205.                                                                                                                                     | 14.6 | 102       |
| 42 | Flow Synthesis of Biocompatible Fe <sub>3</sub> O <sub>4</sub> Nanoparticles: Insight into the<br>Effects of Residence Time, Fluid Velocity, and Tube Reactor Dimension on Particle Size Distribution.<br>Chemistry of Materials, 2015, 27, 1299-1305. | 6.7  | 64        |
| 43 | Ultrasensitive <i>in Vivo</i> Detection of Primary Gastric Tumor and Lymphatic Metastasis Using<br>Upconversion Nanoparticles. ACS Nano, 2015, 9, 2120-2129.                                                                                           | 14.6 | 90        |
| 44 | No king without a crown – impact of the nanomaterial-protein corona on nanobiomedicine.<br>Nanomedicine, 2015, 10, 503-519.                                                                                                                            | 3.3  | 101       |
| 45 | Chemical Spacer Design for Engineering the Relaxometric Properties of Core–Shell Structured Rare<br>Earth Nanoparticles. Chemistry of Materials, 2015, 27, 7918-7925.                                                                                  | 6.7  | 24        |
| 46 | Are Rareâ€Earth Nanoparticles Suitable for In Vivo Applications?. Advanced Materials, 2014, 26, 6922-6932.                                                                                                                                             | 21.0 | 166       |
| 47 | Upconversion luminescence nanoparticles-based lateral flow immunochromatographic assay for cephalexin detection. Journal of Materials Chemistry C, 2014, 2, 9637-9642.                                                                                 | 5.5  | 48        |
| 48 | Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials, 2014, 35, 1608-1617.                                                                                         | 11.4 | 110       |
| 49 | Anchoring Group Effects of Surface Ligands on Magnetic Properties of Fe <sub>3</sub> O <sub>4</sub><br>Nanoparticles: Towards High Performance MRI Contrast Agents. Advanced Materials, 2014, 26,<br>2694-2698.                                        | 21.0 | 194       |
| 50 | In situ111In-doping for achieving biocompatible and non-leachable 111In-labeled Fe3O4 nanoparticles.<br>Chemical Communications, 2014, 50, 2170.                                                                                                       | 4.1  | 50        |
| 51 | In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale, 2014, 6, 14343-14353.                                                                                | 5.6  | 54        |
| 52 | Revisiting the coordination chemistry for preparing manganese oxide nanocrystals in the presence of oleylamine and oleic acid. Nanoscale, 2014, 6, 5918.                                                                                               | 5.6  | 34        |
| 53 | Magnetically Engineered Semiconductor Quantum Dots as Multimodal Imaging Probes. Advanced<br>Materials, 2014, 26, 6367-6386.                                                                                                                           | 21.0 | 145       |
| 54 | Magnetic/Upconversion Fluorescent NaGdF <sub>4</sub> :Yb,Er Nanoparticle-Based Dual-Modal<br>Molecular Probes for Imaging Tiny Tumors <i>in Vivo</i> . ACS Nano, 2013, 7, 7227-7240.                                                                   | 14.6 | 336       |

TIANCONG

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Aqueous Manganese-Doped Core/Shell CdTe/ZnS Quantum Dots with Strong Fluorescence and High<br>Relaxivity. Journal of Physical Chemistry C, 2013, 117, 18752-18761.                                                                        | 3.1  | 58        |
| 56 | NaCdF <sub>4</sub> Nanoparticle-Based Molecular Probes for Magnetic Resonance Imaging of<br>Intraperitoneal Tumor Xenografts <i>in Vivo</i> . ACS Nano, 2013, 7, 330-338.                                                                 | 14.6 | 207       |
| 57 | Ultrasmall PEGylated MnxFe3â^'xO4 (x = 0–0.34) nanoparticles: effects of Mn(ii) doping on T1- and<br>T2-weighted magnetic resonance imaging. RSC Advances, 2013, 3, 23454.                                                                | 3.6  | 19        |
| 58 | Receptor-Mediated Delivery of Magnetic Nanoparticles across the Blood–Brain Barrier. ACS Nano, 2012, 6, 3304-3310.                                                                                                                        | 14.6 | 272       |
| 59 | Surface engineering of gold nanoparticles for in vitro siRNA delivery. Nanoscale, 2012, 4, 5102.                                                                                                                                          | 5.6  | 75        |
| 60 | Gelification: An Effective Measure for Achieving Differently Sized Biocompatible<br>Fe <sub>3</sub> O <sub>4</sub> Nanocrystals through a Single Preparation Recipe. Journal of the<br>American Chemical Society, 2011, 133, 19512-19523. | 13.7 | 66        |
| 61 | Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for<br>dual-contrast <i>T</i> <sub>1</sub> - and <i>T</i> <sub>2</sub> -weighted magnetic resonance imaging.<br>Nanotechnology, 2011, 22, 245604.                       | 2.6  | 126       |
| 62 | Quantum dot-antisense oligonucleotide conjugates for multifunctional gene transfection, mRNA regulation, and tracking of biological processes. Biomaterials, 2011, 32, 1923-1931.                                                         | 11.4 | 40        |
| 63 | One-pot synthesis of PVP-coated Ni0.6Fe2.4O4 nanocrystals. Science Bulletin, 2010, 55, 3472-3478.                                                                                                                                         | 1.7  | 5         |
| 64 | Investigations on the Interactions between Plasma Proteins and Magnetic Iron Oxide Nanoparticles with Different Surface Modifications. Journal of Physical Chemistry C, 2010, 114, 21270-21276.                                           | 3.1  | 64        |
| 65 | A Novel Type of Dual-Modality Molecular Probe for MR and Nuclear Imaging of Tumor: Preparation,<br>Characterization and in Vivo Application. Molecular Pharmaceutics, 2009, 6, 1074-1082.                                                 | 4.6  | 79        |
| 66 | Superdispersible PVP-Coated Fe <sub>3</sub> O <sub>4</sub> Nanocrystals Prepared by a "One-Pot―<br>Reaction. Journal of Physical Chemistry B, 2008, 112, 14390-14394.                                                                     | 2.6  | 115       |
| 67 | Synthesis and Shape-Tailoring of Copper Sulfide/Indium Sulfide-Based Nanocrystals. Journal of the<br>American Chemical Society, 2008, 130, 13152-13161.                                                                                   | 13.7 | 246       |
| 68 | Preparation of magnetite nanocrystals with surface reactive moieties by one-pot reaction. Journal of Colloid and Interface Science, 2007, 311, 469-474.                                                                                   | 9.4  | 55        |
| 69 | Detection of toxoplasmic lesions in mouse brain by USPIO-enhanced magnetic resonance imaging.<br>Magnetic Resonance Imaging, 2007, 25, 1442-1448.                                                                                         | 1.8  | 19        |
| 70 | Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone:<br>Mechanism Leading to Fe3O4. Angewandte Chemie - International Edition, 2005, 44, 123-126.                                             | 13.8 | 229       |
| 71 | One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals. Chemistry of Materials, 2004,<br>16, 1391-1393.                                                                                                                      | 6.7  | 338       |