
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rehydration of mango powders produced by cast-tape drying, freeze drying, and spray drying. Drying Technology, 2022, 40, 175-187.	3.1	15
2	Effects of vacuum and multiflash drying on the microbiota and colour of dried yellow mealworm (Tenebrio molitor). Journal of Insects As Food and Feed, 2022, 8, 23-33.	3.9	2
3	Production of Spirulina (<i>Arthrospira platensis</i>) powder by innovative and traditional drying techniques. Journal of Food Process Engineering, 2022, 45, e13919.	2.9	6
4	Mechanical-acoustical measurements to assess the crispness of dehydrated bananas at different water activities. LWT - Food Science and Technology, 2022, 154, 112822.	5.2	5
5	Impact of the power density on the physical properties, starch structure, and acceptability of oil-free potato chips dehydrated by microwave vacuum drying. LWT - Food Science and Technology, 2022, 155, 112917.	5.2	7
6	Survival Analysis to Predict How Color Influences the Shelf Life of Strawberry Leather. Foods, 2022, 11, 218.	4.3	7
7	Temperature control for high-quality oil-free sweet potato CHIPS produced by microwave rotary drying under vacuum. LWT - Food Science and Technology, 2022, 157, 113047.	5.2	8
8	Influence of Emerging Technologies on the Utilization of Plant Proteins. Frontiers in Nutrition, 2022, 9, 809058.	3.7	27
9	Kinetics of bread physical properties in baking depending on actual finely controlled temperature. Food Control, 2022, 137, 108898.	5.5	3
10	Low-pressure conductive thin film drying of açaÃ-pulp. LWT - Food Science and Technology, 2022, 164, 113695.	5.2	5
11	Mechanistic understanding of microwave-vacuum drying of non-deformable porous media. Drying Technology, 2021, 39, 850-867.	3.1	6
12	Microwave vacuum drying of <scp> <i>Pereskia aculeata </i> </scp> Miller leaves: Powder production and characterization. Journal of Food Process Engineering, 2021, 44, e13612.	2.9	6
13	Producing crispy chickpea snacks by air, freeze, and microwave multi-flash drying. LWT - Food Science and Technology, 2021, 140, 110781.	5.2	8
14	An innovative hybrid-solar-vacuum dryer to produce high-quality dried fruits and vegetables. LWT - Food Science and Technology, 2021, 140, 110777.	5.2	18
15	Adhesion of Food on Surfaces: Theory, Measurements, and Main Trends to Reduce It Prior to Industrial Drying. Food Engineering Reviews, 2021, 13, 884-901.	5.9	10
16	Conductive drying methods for producing high-quality restructured pineapple-starch snacks. Innovative Food Science and Emerging Technologies, 2021, 70, 102701.	5.6	6
17	Microwave and microwave-vacuum drying as alternatives to convective drying in barley malt processing. Innovative Food Science and Emerging Technologies, 2021, 73, 102770.	5.6	23
18	Strawberry-hydrocolloids dried by continuous cast-tape drying to produce leather and powder. Food Hydrocolloids, 2021, 121, 107041.	10.7	6

#	Article	IF	CITATIONS
19	Mathematical modeling and experimental assessment of the cast-tape drying. Drying Technology, 2020, 38, 1024-1035.	3.1	13
20	lsothermal drying of plant-based food material: An approach using 2D polydimethylsiloxane (PDMS) micromodels. Chemical Engineering Science, 2020, 215, 115385.	3.8	4
21	Recent Advances in the Production of Fruit Leathers. Food Engineering Reviews, 2020, 12, 68-82.	5.9	19
22	Spectrum crispness sensory scale correlation with instrumental acoustic high-sampling rate and mechanical analyses. Food Research International, 2020, 129, 108886.	6.2	15
23	Microwave vacuum drying of foods with temperature control by power modulation. Innovative Food Science and Emerging Technologies, 2020, 65, 102473.	5.6	24
24	Evolution of the physicochemical properties of oil-free sweet potato chips during microwave vacuum drying. Innovative Food Science and Emerging Technologies, 2020, 63, 102317.	5.6	39
25	Cold plasma treatment to improve the adhesion of cassava starch films onto PCL and PLA surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123739.	4.7	58
26	Development of dehydrated products from peach palm–tucupi blends with edible film characteristics using refractive window. Journal of Food Science and Technology, 2019, 56, 560-570.	2.8	20
27	Vacuum-aided production of low sodium ready-to-eat charque. Journal of Food Science and Technology, 2019, 56, 3579-3586.	2.8	1
28	Fortified apple (Malus spp., var. Fuji) snacks by vacuum impregnation of calcium lactate and convective drying. LWT - Food Science and Technology, 2019, 113, 108298.	5.2	37
29	Oil–free potato chips produced by microwave multiflash drying. Journal of Food Engineering, 2019, 261, 133-139.	5.2	36
30	Effect of the degree of acetylation, plasticizer concentration and relative humidity on cassava starch films properties. Food Science and Technology, 2019, 39, 491-499.	1.7	13
31	Production of mango leathers by cast-tape drying: Product characteristics and sensory evaluation. LWT - Food Science and Technology, 2019, 99, 445-452.	5.2	26
32	A fast drying method for the production of salted-and-dried meat. Food Science and Technology, 2019, 39, 526-534.	1.7	10
33	Microwave vacuum drying and multi-flash drying of pumpkin slices. Journal of Food Engineering, 2018, 232, 1-10.	5.2	70
34	Heat transfer and drying kinetics of tomato pulp processed by cast-tape drying. Drying Technology, 2018, 36, 160-168.	3.1	20
35	Properties of starch–cellulose fiber films produced by tape casting coupled with infrared radiation. Drying Technology, 2018, 36, 830-840.	3.1	12
36	Optimal experimental design to model spoilage bacteria growth in vacuum-packaged ham. Journal of Food Engineering, 2018, 216, 20-26.	5.2	13

3

#	Article	IF	CITATIONS
37	Conductive multiâ€flash drying of mango slices: Vacuum pulse conditions on drying rate and product properties. Journal of Food Processing and Preservation, 2018, 42, e13440.	2.0	11
38	Kinetics of vacuum and air cooling of chicken breasts arranged in stacks. Journal of Food Science and Technology, 2018, 55, 2288-2297.	2.8	7
39	Assessment of texture and storage conditions of mangoes slices dried by a conductive multi-flash process. Journal of Food Engineering, 2018, 239, 8-14.	5.2	18
40	Effect of process variables on the drying of guava pulp by cast-tape drying. LWT - Food Science and Technology, 2018, 96, 620-626.	5.2	17
41	Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices. LWT - Food Science and Technology, 2018, 96, 612-619.	5.2	53
42	Modeling the growth of Lactobacillus viridescens under non-isothermal conditions in vacuum-packed sliced ham. International Journal of Food Microbiology, 2017, 240, 97-101.	4.7	22
43	Optimal experimental design for improving the estimation of growth parameters of Lactobacillus viridescens from data under non-isothermal conditions. International Journal of Food Microbiology, 2017, 240, 57-62.	4.7	21
44	Improving quality of dried fruits: A comparison between conductive multi-flash and traditional drying methods. LWT - Food Science and Technology, 2017, 84, 717-725.	5.2	58
45	Scale-up of the production of soy (Glycine max L.) protein films using tape casting: Formulation of film-forming suspension and drying conditions. Food Hydrocolloids, 2017, 66, 110-117.	10.7	31
46	Production of mango powder by spray drying and cast-tape drying. Powder Technology, 2017, 305, 447-454.	4.2	102
47	Assessing heat treatment of chicken breast cuts by impedance spectroscopy. Food Science and Technology International, 2017, 23, 110-118.	2.2	5
48	EXPERIMENTAL APPROACH TO ASSESS EVAPORATIVE COOLING UNDER FORCED AIR FLOW. Brazilian Journal of Chemical Engineering, 2017, 34, 171-181.	1.3	2
49	Microbial growth models: A general mathematical approach to obtain μ max and λ parameters from sigmoidal empirical primary models. Brazilian Journal of Chemical Engineering, 2017, 34, 369-375.	1.3	17
50	Evaluation of different software tools for deconvolving differential scanning calorimetry thermograms of salted beef. Food Science and Technology, 2016, 36, 694-700.	1.7	6
51	Predictive Modeling of the Growth of Lactobacillus Viridescens under Non-isothermal Conditions. Procedia Food Science, 2016, 7, 29-32.	0.6	2
52	Predicting Growth of Weissella Viridescens in Culture Medium under Dynamic Temperature Conditions. Procedia Food Science, 2016, 7, 37-40.	0.6	5
53	Estimation of the Temperature Dependent Growth Parameters of Lactobacillus Viridescens in Culture Medium with Two-step Modelling and Optimal Experimental Design Approaches. Procedia Food Science, 2016, 7, 25-28.	0.6	1
54	Influence of vacuum application, acid addition and partial replacement of NaCl by KCl on the mass transfer during salting of beef cuts. LWT - Food Science and Technology, 2016, 74, 26-33.	5.2	36

#	Article	IF	CITATIONS
55	Cast-tape drying of tomato juice for the production of powdered tomato. Food and Bioproducts Processing, 2016, 100, 145-155.	3.6	35
56	Vacuum impregnation and drying of calcium-fortified pineapple snacks. LWT - Food Science and Technology, 2016, 72, 501-509.	5.2	57
57	Dehydration and Rehydration of Cooked Mussels. International Journal of Food Engineering, 2016, 12, 173-180.	1.5	8
58	A microwave multi-flash drying process for producing crispy bananas. Journal of Food Engineering, 2016, 178, 1-11.	5.2	85
59	Processes for controlling the structure and texture of dehydrated banana. Drying Technology, 2016, 34, 167-176.	3.1	37
60	Processing of chopped mussel meat in retort pouch. Food Science and Technology, 2015, 35, 612-619.	1.7	10
61	Production of Tomato Powder by Refractance Window Drying. Drying Technology, 2015, 33, 1463-1473.	3.1	58
62	Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 2015, 69, 410-417.	6.2	68
63	Conductive drying of starch-fiber films prepared by tape casting: Drying rates and film properties. LWT - Food Science and Technology, 2015, 64, 356-366.	5.2	31
64	How to make a microwave vacuum dryer with turntable. Journal of Food Engineering, 2015, 166, 276-284.	5.2	59
65	Experimental approach to evaluate the influence of characteristic length on the dynamics of biphasic flow in vacuum impregnation. Chemical Engineering Science, 2015, 137, 875-883.	3.8	6
66	Espalhamento e secagem de filme de amido-glicerol-fibra preparado por "tape-casting". Pesquisa Agropecuaria Brasileira, 2014, 49, 136-143.	0.9	5
67	How to Adapt a Lab-Scale Freeze Dryer for Assessing Dehydrating Curves at Different Heating Conditions. Drying Technology, 2014, 32, 1119-1124.	3.1	12
68	Operational diagrams for salting-marination processes and quality of cooked mussels. LWT - Food Science and Technology, 2014, 59, 746-753.	5.2	9
69	Production and Characterization of Bags from Biocomposite Films of Starchâ€Vegetal Fibers Prepared by Tape Casting. Journal of Food Process Engineering, 2014, 37, 482-492.	2.9	19
70	Alternative processing strategies to reduce the weight loss of cooked chicken breast fillets subjected to vacuum cooling. Journal of Food Engineering, 2014, 128, 10-16.	5.2	17
71	Modeling the Growth of Byssochlamys fulva on Solidified Apple Juice at Different Temperatures. Brazilian Archives of Biology and Technology, 2014, 57, 971-978.	0.5	11
72	Poultry Carcasses Chilled by Forced Air, Water Immersion and Combination of Forced Air and Water Immersion. Journal of Food Process Engineering, 2014, 37, 550-559.	2.9	1

#	Article	IF	CITATIONS
73	PROCESSING OF <i>PERNA PERNA</i> MUSSELS USING INTEGRATED PROCESS OF COOKING AND VACUUM COOLING. Journal of Food Process Engineering, 2013, 36, 192-201.	2.9	12
74	POSSIBILITIES FOR INTEGRATING COOKING AND VACUUM COOLING OF POTATOES IN THE SAME VESSEL. Journal of Food Processing and Preservation, 2013, 37, 846-854.	2.0	6
75	Water vapor barrier and mechanical properties of starch films containing stearic acid. Industrial Crops and Products, 2013, 41, 227-234.	5.2	69
76	Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. Journal of Food Engineering, 2013, 119, 490-496.	5.2	42
77	Scale-up of the production of cassava starch based films using tape-casting. Journal of Food Engineering, 2013, 119, 800-808.	5.2	130
78	Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions. Journal of Theoretical Biology, 2013, 335, 88-96.	1.7	55
79	Influence of the simultaneous addition of bentonite and cellulose fibers on the mechanical and barrier properties of starch composite-films. Food Science and Technology International, 2012, 18, 35-45.	2.2	28
80	Chicken Feather Keratin Films Plasticized with Polyethylene Glycol. International Journal of Polymeric Materials and Polymeric Biomaterials, 2012, 61, 17-29.	3.4	32
81	Dynamics of vacuum impregnation of apples: Experimental data and simulation results using a VOF model. Journal of Food Engineering, 2012, 113, 337-343.	5.2	31
82	Integration of cooking and vacuum cooling of carrots in a same vessel. Food Science and Technology, 2012, 32, 187-195.	1.7	6
83	Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohydrate Polymers, 2012, 89, 504-510.	10.2	88
84	A convective multi-flash drying process for producing dehydrated crispy fruits. Journal of Food Engineering, 2012, 108, 523-531.	5.2	86
85	Use of transient and steady-state methods and AFM technique for investigating the water transfer through starch-based films. Journal of Food Engineering, 2012, 109, 62-68.	5.2	14
86	Pore-Scale Simulation of Drying of a Porous Media Saturated with a Sucrose Solution. Drying Technology, 2011, 29, 873-887.	3.1	16
87	Homogeneous Volume-of-Fluid (VOF) Model for Simulating the Imbibition in Porous Media Saturated by Gas. Energy & Fuels, 2011, 25, 2267-2273.	5.1	15
88	Mechanical and barrier properties of composite films based on rice flour and cellulose fibers. LWT - Food Science and Technology, 2011, 44, 535-542.	5.2	70
89	Theoretical and experimental aspects of vacuum impregnation of porous media using transparent etched networks. International Journal of Multiphase Flow, 2011, 37, 1219-1226.	3.4	14
90	Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 2011, 33, 605-610.	5.2	192

#	Article	IF	CITATIONS
91	Water purification system using a heat pump. Applied Thermal Engineering, 2011, 31, 3354-3357.	6.0	3
92	On-line monitoring of heat transfer coefficients in a stirred tank from the signatures of the resultant force on a submerged body. International Journal of Refrigeration, 2010, 33, 600-606.	3.4	1
93	Construction and application a vane system in a rotational rheometer for determination of the rheological properties of Monascus ruber CCT 3802. Journal of Biorheology, 2010, 24, 29-35.	0.5	20
94	The effect of direct acidification on the microbiological, physicochemical and sensory properties of probiotic Minas Frescal cheese. International Journal of Dairy Technology, 2010, , no-no.	2.8	0
95	Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 2010, 51, 213-219.	3.7	179
96	Evaluation of the effects of water agitation by air injection and water recirculation on the heat transfer coefficients in immersion cooling. Journal of Food Engineering, 2010, 96, 59-65.	5.2	3
97	The influence of Bifidobacterium Bb-12 and lactic acid incorporation on the properties of Minas Frescal cheese. Journal of Food Engineering, 2010, 96, 621-627.	5.2	59
98	Integrated cooking and vacuum cooling of chicken breast cuts in a single vessel. Journal of Food Engineering, 2010, 100, 219-224.	5.2	31
99	The effect of direct acidification on the microbiological, physicochemical and sensory properties of probiotic Minas Frescal cheese. International Journal of Dairy Technology, 2010, 63, 561-568.	2.8	22
100	Experimental results and modeling of poultry carcass cooling by water immersion. Food Science and Technology, 2010, 30, 447-453.	1.7	10
101	Drying and rehydration of oyster mushroom. Brazilian Archives of Biology and Technology, 2010, 53, 945-952.	0.5	26
102	Characterization of foams obtained from cassava starch, cellulose fibres and dolomitic limestone by a thermopressing process. Brazilian Archives of Biology and Technology, 2010, 53, 185-192.	0.5	29
103	Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 2009, 23, 1328-1333.	10.7	250
104	Application of diffusive and empirical models to hydration, dehydration and salt gain during osmotic treatment of chicken breast cuts. Journal of Food Engineering, 2009, 91, 553-559.	5.2	52
105	Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydrate Polymers, 2009, 77, 293-299.	10.2	152
106	Effect of hydrothermal treatment and pH on the formation of aglycones in soybean. European Food Research and Technology, 2008, 227, 1729-1731.	3.3	8
107	Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering, 2008, 85, 435-443.	5.2	151
108	Salting operational diagrams for chicken breast cuts: Hydration–dehydration. Journal of Food Engineering, 2008, 88, 36-44.	5.2	44

#	Article	IF	CITATIONS
109	Technological properties of natural hog casings treated with surfactant solutions. Journal of Food Engineering, 2008, 89, 17-23.	5.2	12
110	Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 2008, 72, 82-87.	10.2	238
111	MECHANICAL CHARACTERIZATION OF SHREDDED WHEAT. Journal of Texture Studies, 2008, 39, 444-459.	2.5	19
112	Effect of vacuum impregnation temperature on the mechanical properties and osmotic dehydration parameters of apples. Brazilian Archives of Biology and Technology, 2008, 51, 599-606.	0.5	7
113	Study of banana (Musa aaa Cavendish cv Nanica) trigger ripening for small scale process. Brazilian Archives of Biology and Technology, 2008, 51, 1033-1047.	0.5	10
114	Efeito da impregnação a vácuo na transferência de massa durante o processo de salga de cortes de peito de frango. Food Science and Technology, 2008, 28, 366-372.	1.7	15
115	Water uptake by poultry carcasses during cooling by water immersion. Chemical Engineering and Processing: Process Intensification, 2007, 46, 444-450.	3.6	24
116	Experimental Determination of the Dynamics of Vacuum Impregnation of Apples. Journal of Food Science, 2007, 72, E470-5.	3.1	30
117	Effect of vacuum and relaxation periods and solution concentration on the osmotic dehydration of apples. International Journal of Food Science and Technology, 2007, 42, 441-447.	2.7	28
118	DETERMINATION OF HEAT TRANSFER COEFFICIENT IN COOLING-FREEZING TUNNELS USING EXPERIMENTAL TIME–TEMPERATURE DATA. Journal of Food Process Engineering, 2007, 30, 717-728.	2.9	7
119	MECHANICAL MEASUREMENTS IN PUFFED RICE CAKES. Journal of Texture Studies, 2007, 38, 619-634.	2.5	26
120	Effect of Vacuum Impregnation-Dehydration on the Mechanical Properties of Apples. Drying Technology, 2006, 24, 1649-1656.	3.1	7
121	Determination of Mass Transfer Coefficients During the Vacuum Cooling of Pre-Cooked Meat Cuts. International Journal of Food Properties, 2006, 9, 287-298.	3.0	10
122	Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT - Food Science and Technology, 2006, 39, 292-301.	5.2	73
123	Queratina de penas de frango: extração, caracterização e obtenção de filmes. Food Science and Technology, 2006, 26, 421-427.	1.7	8
124	Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate. Polymer Degradation and Stability, 2006, 91, 726-732.	5.8	78
125	Mechanical Properties, Water Vapor Permeability and Water Affinity of Feather Keratin Films Plasticized with Sorbitol. Journal of Polymers and the Environment, 2006, 14, 215-222.	5.0	41
126	Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocolloids, 2006, 20, 975-982.	10.7	113

#	Article	IF	CITATIONS
127	Vacuum Cooling of Cooked Mussels (Perna perna). Food Science and Technology International, 2006, 12, 19-25.	2.2	11
128	Hygroscopicity and water vapor permeability of Kraft paper impregnated with starch acetate. Journal of Food Engineering, 2005, 71, 394-402.	5.2	95
129	WEIGHT LOSS OF PRECOOKED CHICKEN BREAST COOLED BY VACUUM APPLICATION. Journal of Food Process Engineering, 2005, 28, 299-312.	2.9	17
130	Use of dyed solutions to visualize different aspects of vacuum impregnation of Minas cheese. LWT - Food Science and Technology, 2005, 38, 379-386.	5.2	15
131	Biodegradable films made from raw and acetylated cassava starch. Brazilian Archives of Biology and Technology, 2004, 47, 477-484.	0.5	40
132	Cassava bagasse-Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydrate Polymers, 2004, 55, 237-243.	10.2	77
133	Impregnation of Kraft Paper with Cassava-Starch Acetate— Analysis of the Tensile Strength, Water Absorption and Water Vapor Permeability. Starch/Staerke, 2003, 55, 504-510.	2.1	25
134	Determination of thermal diffusivity of mortadella using actual cooking process data. Journal of Food Engineering, 2002, 55, 89-94.	5.2	29
135	Numerical and experimental network study of evaporation in capillary porous media. Drying rates. Chemical Engineering Science, 1998, 53, 2257-2269.	3.8	178
136	MODELING OF DRYING IN CAPILLARY-POROUS MEDIA: A DISCRETE APPROACH. Drying Technology, 1998, 16, 1769-1787.	3.1	27
137	Numerical and experimental network study of evaporation in capillary porous media. Phase distributions. Chemical Engineering Science, 1996, 51, 5171-5185.	3.8	128
138	Influence of secondary packing on the freezing time of chiken meat in air blast freezing tunnels. Food Science and Technology, 0, 28, 252-258.	1.7	4
139	ELABORAÇÃO E ESTUDO DE FILMES COMESTÃVEIS DE GOIABA (Psidium guajava L.) OBTIDOS POR CAST-TAPE DRYING. , 0, , .		0
140	AVALIAÇÃO DAS PROPRIEDADES MECÃ,NICAS NO ESTUDO DA SECAGEM E ORIENTAÇÃO DA MATRIZ DE FIL BIODEGRADÃVEIS DE AMIDO E ACETATO DE AMIDO PELO MÉTODO TAPECASTING. , 0, , 219-231.	.MES	0
141	Physicochemical characterization and quantification of bioactive compounds of guava powder produced by cast-tape drying. Food Science and Technology, 0, 42, .	1.7	0
142	Antioxidant and antifungal properties of essential oils of oregano (Origanum vulgare) and mint (Mentha arvensis) against Aspergillus flavus and Penicillium commune for use in food preservation. Food Science and Technology, 0, 42, .	1.7	8