Rolf Kiessling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498413/publications.pdf

Version: 2024-02-01

93 papers

8,299 citations

57631 44 h-index 86 g-index

96 all docs 96
docs citations

96 times ranked 10605 citing authors

#	Article	IF	CITATIONS
1	Generation of Tumor-Specific Cytotoxic T Cells From Blood via InÂVitro Expansion Using Autologous Dendritic Cells Pulsed With Neoantigen-Coupled Microbeads. Frontiers in Oncology, 2022, 12, 866763.	1.3	2
2	Precision radiation of immune checkpoint therapy resistant melanoma metastases (PROMMEL study): study protocol for a phase II open-label multicenter trial. Acta Oncol \tilde{A}^3 gica, 2022, 61, 869-873.	0.8	1
3	Targeting of Nrf2 improves antitumoral responses by human NK cells, TIL and CAR T cells during oxidative stress. , 2022, 10, e004458.		18
4	Trogocytosis and fratricide killing impede MSLN-directed CAR T cell functionality. Oncolmmunology, 2022, 11 , .	2.1	9
5	Counteracting CAR T cell dysfunction. Oncogene, 2021, 40, 421-435.	2.6	76
6	Cisplatin inhibits frequency and suppressive activity of monocytic myeloid-derived suppressor cells in cancer patients. Oncolmmunology, 2021, 10, 1935557.	2.1	17
7	Predicting anti-PD-1 responders in malignant melanoma from the frequency of S100A9+ monocytes in the blood. , 2021, 9, e002171.		12
8	Interleukinâ€33 is a Novel Immunosuppressor that Protects Cancer Cells from TIL Killing by a Macrophageâ€Mediated Shedding Mechanism. Advanced Science, 2021, 8, 2101029.	5 . 6	20
9	Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. Oncolmmunology, 2020, 9, 1792058.	2.1	30
10	Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22910-22919.	3.3	32
11	PD-1 checkpoint blockade in advanced melanoma patients: NK cells, monocytic subsets and host PD-L1 expression as predictive biomarker candidates. Oncolmmunology, 2020, 9, 1786888.	2.1	29
12	Caveolin-1-Mediated Tumor Suppression Is Linked to Reduced HIF1 $\hat{l}\pm$ S-Nitrosylation and Transcriptional Activity in Hypoxia. Cancers, 2020, 12, 2349.	1.7	11
13	Genetically modified immune cells targeting tumor antigens. , 2020, 214, 107603.		17
14	High expression of ID1 in monocytes is strongly associated with phenotypic and functional MDSC markers in advanced melanoma. Cancer Immunology, Immunotherapy, 2020, 69, 513-522.	2.0	6
15	The Outcome of <i>Ex Vivo</i> TIL Expansion Is Highly Influenced by Spatial Heterogeneity of the Tumor T-Cell Repertoire and Differences in Intrinsic <i>In Vitro</i> Growth Capacity between T-Cell Clones. Clinical Cancer Research, 2020, 26, 4289-4301.	3.2	46
16	Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32005-32016.	3.3	89
17	Establishment of Melanoma Tumor Xenograft Using Single Cell Line Suspension and Co-injection of Patient-Derived T Cells in Immune-Deficient NSG Mice. Methods in Molecular Biology, 2019, 1913, 207-215.	0.4	1
18	Assessment of Antitumor T-Cell Responses by Flow Cytometry After Coculture of Tumor Cells with Autologous Tumor-Infiltrating Lymphocytes. Methods in Molecular Biology, 2019, 1913, 133-140.	0.4	3

#	Article	IF	Citations
19	Evaluating Antibody-Dependent Cell-Mediated Cytotoxicity by Chromium Release Assay. Methods in Molecular Biology, 2019, 1913, 167-179.	0.4	1
20	Evaluating Antibody-Dependent Cell-Mediated Cytotoxicity by Flow Cytometry. Methods in Molecular Biology, 2019, 1913, 181-194.	0.4	5
21	Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Frontiers in Immunology, 2019, 10, 2766.	2.2	23
22	Self-Delivering RNAi Targeting PD-1 Improves Tumor-Specific T Cell Functionality for Adoptive Cell Therapy of Malignant Melanoma. Molecular Therapy, 2018, 26, 1482-1493.	3.7	38
23	Cripto-1 Plasmid DNA Vaccination Targets Metastasis and Cancer Stem Cells in Murine Mammary Carcinoma. Cancer Immunology Research, 2018, 6, 1417-1425.	1.6	25
24	Enhanced stimulation of human tumor-specific T cells by dendritic cells matured in the presence of interferon-13 and multiple toll-like receptor agonists. Cancer Immunology, Immunotherapy, 2017, 66, 1333-1344.	2.0	31
25	IL-15, TIM-3 and NK cells subsets predict responsiveness to anti-CTLA-4 treatment in melanoma patients. Oncolmmunology, 2017, 6, e1261242.	2.1	59
26	Intratumorally injected pro-inflammatory allogeneic dendritic cells as immune enhancers: a first-in-human study in unfavourable risk patients with metastatic renal cell carcinoma., 2017, 5, 52.		42
27	Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget, 2017, 8, 21539-21553.	0.8	103
28	Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade. Oncolmmunology, 2016, 5, e1232222.	2.1	48
29	IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood, 2016, 128, 1475-1489.	0.6	136
30	Coexpressed Catalase Protects Chimeric Antigen Receptorâ€"Redirected T Cells as well as Bystander Cells from Oxidative Stressâ€"Induced Loss of Antitumor Activity. Journal of Immunology, 2016, 196, 759-766.	0.4	164
31	Targeting Suppressive Myeloid Cells Potentiates Checkpoint Inhibitors to Control Spontaneous Neuroblastoma. Clinical Cancer Research, 2016, 22, 3849-3859.	3.2	109
32	Non-classical HLA-class I expression in serous ovarian carcinoma: Correlation with the HLA-genotype, tumor infiltrating immune cells and prognosis. Oncolmmunology, 2016, 5, e1052213.	2.1	51
33	Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization. Oncotarget, 2016, 7, 52061-52084.	0.8	11
34	Dendritic cell regulation of NKâ€cell responses involves lymphotoxinâ€Î±, ILâ€12, and TGFâ€Î². European Journal of Immunology, 2015, 45, 1783-1793.	1.6	34
35	Methylcholanthrene-Induced Sarcomas Develop Independently from NOX2-Derived ROS. PLoS ONE, 2015, 10, e0129786.	1.1	11
36	Contrasting Effects of the Cytotoxic Anticancer Drug Gemcitabine and the EGFR Tyrosine Kinase Inhibitor Gefitinib on NK Cell-Mediated Cytotoxicity via Regulation of NKG2D Ligand in Non-Small-Cell Lung Cancer Cells. PLoS ONE, 2015, 10, e0139809.	1.1	26

3

#	Article	IF	CITATIONS
37	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	2.1	119
38	Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends in Molecular Medicine, 2015, 21, 482-491.	3.5	146
39	T Cell Blockade Immunotherapy Against Cancer and Abscopal Effect in Combination Therapy. Cancer Drug Discovery and Development, 2015, , 211-229.	0.2	0
40	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
41	Laminins 411 and 421 differentially promote tumor cell migration via $\hat{l}\pm6\hat{l}^21$ integrin and MCAM (CD146). Matrix Biology, 2014, 38, 69-83.	1.5	53
42	A phase I clinical trial combining dendritic cell vaccination with adoptive T cell transfer in patients with stage IV melanoma. Cancer Immunology, Immunotherapy, 2014, 63, 1061-1071.	2.0	68
43	Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunology, Immunotherapy, 2014, 63, 977-983.	2.0	31
44	Myeloid Suppressors Decrease Melanoma Survival by Abating Tumor-Fighting T Cells. Clinical Cancer Research, 2014, 20, 1401-1403.	3.2	3
45	Inhibition of Tumor-Derived Prostaglandin-E2 Blocks the Induction of Myeloid-Derived Suppressor Cells and Recovers Natural Killer Cell Activity. Clinical Cancer Research, 2014, 20, 4096-4106.	3.2	230
46	Intratumoral vaccination with activated allogeneic dendritic cells in patients with newly diganosed metastatic renal cell carcinoma (mRCC) Journal of Clinical Oncology, 2014, 32, 3085-3085.	0.8	5
47	The two sides of HER2/neu: immune escape versus surveillance. Trends in Molecular Medicine, 2013, 19, 677-684.	3.5	17
48	Cyclooxygenase-2. Oncolmmunology, 2013, 2, e25157.	2.1	1
49	Ipilimumab Treatment Results in an Early Decrease in the Frequency of Circulating Granulocytic Myeloid-Derived Suppressor Cells as well as Their Arginase1 Production. Cancer Immunology Research, 2013, 1, 158-162.	1.6	112
50	The MAPK Pathway Is a Predominant Regulator of HLA-A Expression in Esophageal and Gastric Cancer. Journal of Immunology, 2013, 191, 6261-6272.	0.4	79
51	Melanoma-Educated CD14+ Cells Acquire a Myeloid-Derived Suppressor Cell Phenotype through COX-2–Dependent Mechanisms. Cancer Research, 2013, 73, 3877-3887.	0.4	160
52	NF- $\hat{l}^{\circ}B$ activation during intradermal DNA vaccination is essential for eliciting tumor protective antigen-specific CTL responses. Human Vaccines and Immunotherapeutics, 2013, 9, 2189-2195.	1.4	15
53	Expression of MHC Class I on breast cancer cells correlates inversely with HER2 expression. Oncolmmunology, 2012, 1, 1104-1110.	2.1	64
54	Opposing consequences of signaling through EGF family members. Oncolmmunology, 2012, 1, 1200-1201.	2.1	2

#	Article	IF	CITATIONS
55	HER-2/neu-mediated Down-regulation of Biglycan Associated with Altered Growth Properties. Journal of Biological Chemistry, 2012, 287, 24320-24329.	1.6	28
56	On the armament and appearances of human myeloid-derived suppressor cells. Clinical Immunology, 2012, 144, 250-268.	1.4	168
57	HER2/HER3 Signaling Regulates NK Cell-Mediated Cytotoxicity via MHC Class I Chain-Related Molecule A and B Expression in Human Breast Cancer Cell Lines. Journal of Immunology, 2012, 188, 2136-2145.	0.4	51
58	Camouflage and sabotage: tumor escape from the immune system. Cancer Immunology, Immunotherapy, 2011, 60, 1161-1171.	2.0	150
59	T cell recognition of HLAâ€A2 restricted tumor antigens is impaired by the oncogene HER2. International Journal of Cancer, 2011, 128, 390-401.	2.3	53
60	Designer lymphocytes to fight cancer: a helping hand from modern molecular biology. Journal of Molecular Medicine, 2010, 88, 1081-1084.	1.7	1
61	Expression and prognostic significance of iNOS in uveal melanoma. International Journal of Cancer, 2010, 126, 2682-2689.	2.3	28
62	Immature Immunosuppressive CD14+HLA-DRâ^'/low Cells in Melanoma Patients Are Stat3hi and Overexpress CD80, CD83, and DC-Sign. Cancer Research, 2010, 70, 4335-4345.	0.4	366
63	Antibody-Dependent Natural Killer Cell–Mediated Cytotoxicity Engendered by a Kinase-Inactive Human HER2 Adenovirus-Based Vaccination Mediates Resistance to Breast Tumors. Cancer Research, 2010, 70, 7431-7441.	0.4	24
64	Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. Journal of Translational Medicine, 2010, 8, 53.	1.8	104
65	HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice. Cancer Immunology, Immunotherapy, 2009, 58, 653-664.	2.0	48
66	Prognostic significance of tumor iNOS and COX-2 in stageÂllI malignant cutaneous melanoma. Cancer Immunology, Immunotherapy, 2009, 58, 1085-1094.	2.0	44
67	Response:Resistance of naturally occurring regulatory T cells toward oxidative stress: possible link with intracellular catecholamine content and implications for cancer therapy. Blood, 2009, 114 , $488-489$.	0.6	1
68	Transduction with the Antioxidant Enzyme Catalase Protects Human T Cells against Oxidative Stress. Journal of Immunology, 2008, 181, 8382-8390.	0.4	81
69	The CD16â^'CD56bright NK Cell Subset Is Resistant to Reactive Oxygen Species Produced by Activated Granulocytes and Has Higher Antioxidative Capacity Than the CD16+CD56dim Subset. Journal of Immunology, 2007, 179, 4513-4519.	0.4	73
70	Interferon- \hat{l}^3 renders tumors that express low levels of Her-2/neu sensitive to cytotoxic T cells. Cancer Immunology, Immunotherapy, 2006, 55, 653-662.	2.0	8
71	Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. International Journal of Cancer, 2004, 108, 71-77.	2.3	138
72	Cellular immunity to the Her-2/neu protooncogene. Advances in Cancer Research, 2002, 85, 101-144.	1.9	72

#	Article	IF	Citations
73	Tumor necrosis factor- \hat{l}_{\pm} induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface. Blood, 2001, 98, 1108-1115.	0.6	102
74	The identification of a common pathogen-specific HLA class l A*0201-restricted cytotoxic T cell epitope encoded within the heat shock protein 65. European Journal of Immunology, 2001, 31, 3602-3611.	1.6	26
75	Inhibition of Activated/Memory (CD45RO+) T Cells by Oxidative Stress Associated with Block of NF-κB Activation. Journal of Immunology, 2001, 167, 2595-2601.	0.4	121
76	DNA Immunization of HLA Transgenic Mice with a Plasmid Expressing Mycobacterial Heat Shock Protein 65 Results in HLA Class I- and II-Restricted T Cell Responses That Can Be Augmented by Cytokines. Human Gene Therapy, 2001, 12, 1797-1804.	1.4	19
77	HER-2/neu is expressed in human renal cell carcinoma at heterogeneous levels independently of tumor grading and staging and can be recognized by HLA-A2.1-restricted cytotoxic T lymphocytes. International Journal of Cancer, 2000, 87, 349-359.	2.3	57
78	Tumor-induced immune dysfunction. Cancer Immunology, Immunotherapy, 1999, 48, 353-362.	2.0	208
79	Identification of HER2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic T lymphocytes. , 1998, 78, 202-208.		75
80	CD28 is not required for rejection of unmanipulated syngeneic and autologous tumors. European Journal of Immunology, 1997, 27, 1988-1993.	1.6	17
81	Mechanisms of escape from CD8+ T-cell clones specific for the HER-2/NEU proto-oncogene expressed in ovarian carcinomas: Related and unrelated to decreased MHC class 1 expression., 1997, 70, 112-119.		27
82	Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. European Journal of Immunology, 1996, 26, 1308-1313.	1.6	321
83	Immunosuppression in human tumor-host interaction: role of cytokines and alterations in signal-transducing molecules. Seminars in Immunopathology, 1996, 18, 227-242.	4.0	36
84	Alterations in the signal-transducing molecules of T cells and nk cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes: Correlation with the stage of the disease. International Journal of Cancer, 1995, 61, 765-772.	2.3	191
85	Lack of interleukin-2 (IL-2) expression and selective expression of IL-10 mRNA in human renal cell carcinoma. International Journal of Cancer, 1995, 63, 366-371.	2.3	125
86	The epstein-barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in burkitt lymphoma lines. International Journal of Cancer, 1994, 57, 240-244.	2.3	132
87	T cell receptor diversity and activation markers in the \hat{W} 1 subset of rheumatoid synovial fluid and peripheral blood T lymphocytes. European Journal of Immunology, 1992, 22, 567-574.	1.6	51
88	Role of hsp60 during Autoimmune and Bacterial Inflammation. Immunological Reviews, 1991, 121, 91-111.	2.8	110
89	Increased susceptibility of ifn-γ-treated neuroblastoma cells to lysis by lymphokine-activated killer cells: Participation of ICAM-1 induction on target cells. International Journal of Cancer, 1991, 47, 527-532.	2.3	58
90	Effect of IFN-Î ³ treatment andin vivo passage of murine tumor cell lines on their sensitivity to lymphokine-activated killef (LAK) cell lysisin vitro; association with H-2 expression on the target cells. International Journal of Cancer, 1989, 44, 669-674.	2.3	17

ROLF KIESSLING

#	Article	IF	CITATIONS
91	Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature, 1986, 319, 675-678.	13.7	1,914
92	Gamma-interferon (IFN- \hat{I}^3) produced during effector and target interactions renders target cells less susceptible to NK-cell-mediated lysis. International Journal of Cancer, 1983, 32, 609-616.	2.3	30
93	An Analysis of the Murine NK Cell as to Structure, Function and Biological Relevance. Immunological Reviews, 1979, 44, 165-208.	2.8	349