
Huan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498000/publications.pdf Version: 2024-02-01

HUANLI

#	Article	IF	CITATIONS
1	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	164
2	Synchrotron Xâ€ray Spectroscopic Investigations of Inâ€5ituâ€Formed Alloy Anodes for Magnesium Batteries. Advanced Materials, 2022, 34, e2108688.	11.1	9
3	Design Rules of a Sulfur Redox Electrocatalyst for Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2110279.	11.1	108
4	Mechanistic Insight into Polypyrrole Coating on V ₂ O ₅ Cathode for Aqueous Zincâ€ l on Battery. ChemElectroChem, 2022, 9, .	1.7	10
5	Inâ€situ Polymerized Gel Polymer Electrolytes with High Roomâ€Temperature Ionic Conductivity and Regulated Na ⁺ Solvation Structure for Sodium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	31
6	Polyiodide Confinement by Starch Enables Shuttleâ€Free Zn–Iodine Batteries. Advanced Materials, 2022, 34, e2201716.	11.1	98
7	Li ₂ S ₄ Anchoring Governs the Catalytic Sulfur Reduction on Defective SmMn ₂ O ₅ in Lithium–Sulfur Battery. Advanced Energy Materials, 2022, 12, .	10.2	29
8	Suppressing Al dendrite growth towards a long-life Al-metal battery. Energy Storage Materials, 2021, 34, 194-202.	9.5	54
9	Mechanism for Zincophilic Sites on Zincâ€Metal Anode Hosts in Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2003419.	10.2	233
10	A Tubular g-C3N4 Based Composite Photocatalyst Combined with Co3O4 Nanoparticles for Photocatalytic Degradation of Diesel Oil. Catalysis Letters, 2021, 151, 3437-3450.	1.4	10
11	A Review of Compact Carbon Design for Supercapacitors with High Volumetric Performance. Small, 2021, 17, e2007548.	5.2	47
12	A Novel CoO/PT-C3N4 Composite Catalyst for Photocatalytic Degradation of Diesel Oil. Catalysis Surveys From Asia, 2021, 25, 148-158.	1.0	6
13	Molecular Scalpel to Chemically Cleave Metal–Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society, 2021, 143, 6681-6690.	6.6	103
14	An Oxygenophilic Atomic Dispersed FeNC Catalyst for Leanâ€Oxygen Seawater Batteries. Advanced Energy Materials, 2021, 11, 2100683.	10.2	22
15	A Ternary Photocatalyst with Double Heterojunctionsfor Efficient Diesel Oil Degradation. ChemistrySelect, 2021, 6, 3117-3125.	0.7	8
16	Selective Catalysis Remedies Polysulfide Shuttling in Lithium‣ulfur Batteries. Advanced Materials, 2021, 33, e2101006.	11.1	229
17	Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Alâ^'S batteries. Nature Communications, 2021, 12, 5714.	5.8	80
18	Cation Vacancy-Boosted Lewis Acid–Base Interactions in a Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51107-51116.	4.0	15

Huan Li

#	Article	IF	CITATIONS
19	A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries. Nature Communications, 2021, 12, 7195.	5.8	80
20	Cross onjugated Polycatechol Organic Cathode for Aqueous Zincâ€lon Storage. ChemSusChem, 2020, 13, 188-195.	3.6	62
21	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020, 142, 2012-2022.	6.6	142
22	Capillary shrinkage of graphene oxide hydrogels. Science China Materials, 2020, 63, 1870-1877.	3.5	41
23	Revealing the Magnesiumâ€Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Abâ€Initio Simulations. Angewandte Chemie - International Edition, 2020, 59, 21728-21735.	7.2	34
24	Revealing the Magnesiumâ€Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Abâ€Initio Simulations. Angewandte Chemie, 2020, 132, 21912-21919.	1.6	4
25	Ionic liquid-modified poly(propylene carbonate)-based electrolyte for all-solid-state lithium battery. Ionics, 2020, 26, 5503-5511.	1.2	8
26	Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995.	8.8	72
27	A Corrosionâ€Resistant and Dendriteâ€Free Zinc Metal Anode in Aqueous Systems. Small, 2020, 16, e2001736.	5.2	354
28	A <scp>thermoâ€stable</scp> poly(propylene carbonate)â€based composite separator for <scp>lithiumâ€sulfur</scp> batteries under elevated temperatures. International Journal of Energy Research, 2020, 44, 10295-10306.	2.2	3
29	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2020, 3, 892-899.	2.4	22
30	Roadmap for advanced aqueous batteries: From design of materials to applications. Science Advances, 2020, 6, eaba4098.	4.7	1,069
31	Sodiumâ€Ion Batteries: 1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€Ion Batteries (Adv. Energy Mater. 30/2019). Advanced Energy Materials, 2019, 9, 1970117.	10.2	4
32	Novel Research Approach Combined with Dielectric Spectrum Testing for Dual-Doped Li ₇ P ₃ S ₁₁ Glass-Ceramic Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 27897-27905.	4.0	23
33	Supercapacitors: Packing Activated Carbons into Dense Graphene Network by Capillarity for High Volumetric Performance Supercapacitors (Adv. Sci. 14/2019). Advanced Science, 2019, 6, 1970086.	5.6	10
34	1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901146.	10.2	50
35	A Lightweight 3D Cu Nanowire Network with Phosphidation Gradient as Current Collector for Highâ€Đensity Nucleation and Stable Deposition of Lithium. Advanced Materials, 2019, 31, e1904991.	11.1	114
36	Packing Activated Carbons into Dense Graphene Network by Capillarity for High Volumetric Performance Supercapacitors. Advanced Science, 2019, 6, 1802355.	5.6	69

Huan Li

#	Article	IF	CITATIONS
37	Quantifying the Volumetric Performance Metrics of Supercapacitors. Advanced Energy Materials, 2019, 9, 1900079.	10.2	88
38	Building Carbonâ€Based Versatile Scaffolds on the Electrode Surface to Boost Capacitive Performance for Fiber Pseudocapacitors. Small, 2019, 15, e1900721.	5.2	26
39	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	10.2	147
40	Nano-SiO ₂ -embedded poly(propylene carbonate)-based composite gel polymer electrolyte for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 9539-9549.	5.2	66
41	Robust Production of Ultrahigh Surface Area Carbon Sheets for Energy Storage. Small, 2018, 14, e1800133.	5.2	25
42	Dense Graphene Monolith for High Volumetric Energy Density Li–S Batteries. Advanced Energy Materials, 2018, 8, 1703438.	10.2	97
43	Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy and Environmental Science, 2016, 9, 3135-3142.	15.6	347
44	A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range. Journal of Materials Chemistry A, 2015, 3, 18860-18866.	5.2	41
45	Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale, 2015, 7, 18459-18463.	2.8	94