Chenguang Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7497711/publications.pdf Version: 2024-02-01

CHENCUANC FAN

#	Article	IF	CITATIONS
1	Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature Biotechnology, 2015, 33, 1272-1279.	9.4	234
2	Short N-terminal sequences package proteins into bacterial microcompartments. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7509-7514.	3.3	214
3	Continuous directed evolution of aminoacyl-tRNA synthetases. Nature Chemical Biology, 2017, 13, 1253-1260.	3.9	185
4	Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14995-15000.	3.3	127
5	The N-Terminal Region of the Medium Subunit (PduD) Packages Adenosylcobalamin-Dependent Diol Dehydratase (PduCDE) into the Pdu Microcompartment. Journal of Bacteriology, 2011, 193, 5623-5628.	1.0	98
6	Genetic Analysis of the Protein Shell of the Microcompartments Involved in Coenzyme B ₁₂ -Dependent 1,2-Propanediol Degradation by <i>Salmonella</i> . Journal of Bacteriology, 2011, 193, 1385-1392.	1.0	93
7	Rationally evolving tRNA ^{Pyl} for efficient incorporation of noncanonical amino acids. Nucleic Acids Research, 2015, 43, e156-e156.	6.5	86
8	The PduQ Enzyme Is an Alcohol Dehydrogenase Used to Recycle NAD+ Internally within the Pdu Microcompartment of Salmonella enterica. PLoS ONE, 2012, 7, e47144.	1.1	81
9	Studying the Lysine Acetylation of Malate Dehydrogenase. Journal of Molecular Biology, 2017, 429, 1396-1405.	2.0	80
10	Genetically Incorporating Two Distinct Post-translational Modifications into One Protein Simultaneously. ACS Synthetic Biology, 2018, 7, 689-695.	1.9	70
11	The PduM Protein Is a Structural Component of the Microcompartments Involved in Coenzyme B ₁₂ -Dependent 1,2-Propanediol Degradation by Salmonella enterica. Journal of Bacteriology, 2012, 194, 1912-1918.	1.0	64
12	Expanding the genetic code of <i>Escherichia coli</i> with phosphotyrosine. FEBS Letters, 2016, 590, 3040-3047.	1.3	60
13	The PduX Enzyme of Salmonella enterica Is an l-Threonine Kinase Used for Coenzyme B12 Synthesis. Journal of Biological Chemistry, 2008, 283, 11322-11329.	1.6	52
14	Catalytic Activity, Stability, and Loading Trends of Alcohol Dehydrogenase Enzyme Encapsulated in a Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 26084-26094.	4.0	37
15	Exploring the Substrate Range of Wildâ€⊺ype Aminoacylâ€ŧRNA Synthetases. ChemBioChem, 2014, 15, 1805-1809.	1.3	34
16	Recent Development of Genetic Code Expansion for Posttranslational Modification Studies. Molecules, 2018, 23, 1662.	1.7	33
17	Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli. Journal of Molecular Biology, 2018, 430, 1901-1911.	2.0	33
18	Expanding the genetic code of Salmonella with non-canonical amino acids. Scientific Reports, 2016, 6, 39920.	1.6	31

CHENGUANG FAN

#	Article	IF	CITATIONS
19	Kinetic and Functional Analysis of l-Threonine Kinase, the PduX Enzyme of Salmonella enterica. Journal of Biological Chemistry, 2009, 284, 20240-20248.	1.6	26
20	Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3047-3052.	1.1	24
21	Dual Genetic Encoding of Acetylâ€lysine and Nonâ€deacetylatable Thioacetylâ€lysine Mediated by Flexizyme. Angewandte Chemie - International Edition, 2016, 55, 4083-4086.	7.2	23
22	Genetically encoding thioacetylâ€lysine as a nonâ€deacetylatable analog of lysine acetylation in <i>Escherichia coli</i> . FEBS Open Bio, 2017, 7, 1805-1814.	1.0	23
23	Characterizing lysine acetylation of <i>Escherichia coli</i> type <scp>II</scp> citrate synthase. FEBS Journal, 2019, 286, 2799-2808.	2.2	22
24	Biochemical Characterization of the Lysine Acetylation of Tyrosylâ€ŧRNA Synthetase in <i>Escherichia coli</i> . ChemBioChem, 2017, 18, 1928-1934.	1.3	21
25	Methyl-Coenzyme M Reductase and Its Post-translational Modifications. Frontiers in Microbiology, 2020, 11, 578356.	1.5	18
26	The Application of Cell-Free Protein Synthesis in Genetic Code Expansion for Post-translational Modifications. Frontiers in Pharmacology, 2019, 10, 248.	1.6	16
27	Functional Characterization and Mutation Analysis of Human ATP:Cob(I)alamin Adenosyltransferase. Biochemistry, 2008, 47, 2806-2813.	1.2	13
28	Genome-Wide Quantification of the Effect of Gene Overexpression on Escherichia coli Growth. Genes, 2018, 9, 414.	1.0	13
29	Genome-Wide Screening of Oxidizing Agent Resistance Genes in Escherichia coli. Antioxidants, 2021, 10, 861.	2.2	11
30	A Facile Protocol to Generate Site-Specifically Acetylated Proteins in Escherichia Coli . Journal of Visualized Experiments, 2017, , .	0.2	8
31	Site-Specifically Studying Lysine Acetylation of Aminoacyl-tRNA Synthetases. ACS Chemical Biology, 2019, 14, 288-295.	1.6	5
32	Introducing noncanonical amino acids for studying and engineering bacterial microcompartments. Current Opinion in Microbiology, 2021, 61, 67-72.	2.3	4
33	Studying Acetylation of Aconitase Isozymes by Genetic Code Expansion. Frontiers in Chemistry, 2022, 10, 862483.	1.8	4
34	A Synthetic Reporter for Probing Mistranslation in Living Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 623.	2.0	1
35	Editorial: Synthetic Nucleic Acids for Expanding Genetic Codes and Probing Living Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 720534.	2.0	1
36	Multifunctional Aspects of PduA Shell Protein from the Microcompartments of Salmonella enterica. Biophysical Journal, 2012, 102, 259a.	0.2	0

#	Article	IF	CITATIONS
37	Studying Lysine Acetylation of Aminoacylâ€ŧRNA Synthetases in Escherichia coli. FASEB Journal, 2019, 33, 630.3.	0.2	0