
Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7497616/publications.pdf Version: 2024-02-01

LIMANC

#	Article	IF	CITATIONS
1	Catalytic Removal of Aqueous Contaminants on N-Doped Graphitic Biochars: Inherent Roles of Adsorption and Nonradical Mechanisms. Environmental Science & Technology, 2018, 52, 8649-8658.	4.6	820
2	Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Science of the Total Environment, 2019, 668, 1298-1309.	3.9	315
3	Magnetic Nanoscale Zerovalent Iron Assisted Biochar: Interfacial Chemical Behaviors and Heavy Metals Remediation Performance. ACS Sustainable Chemistry and Engineering, 2017, 5, 9673-9682.	3.2	176
4	Bifunctional Au@TiO2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Conversion and Management, 2017, 132, 452-459.	4.4	170
5	Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. Chemosphere, 2018, 207, 50-59.	4.2	164
6	Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chemical Engineering Journal, 2018, 354, 623-632.	6.6	117
7	Microbial population dynamics in response to bioaugmentation in a constructed wetland system under 10ŰC. Bioresource Technology, 2016, 205, 166-173.	4.8	95
8	Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. Journal of Hazardous Materials, 2009, 172, 601-605.	6.5	71
9	A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms. Journal of Hazardous Materials, 2020, 384, 121326.	6.5	65
10	Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. Journal of Hazardous Materials, 2020, 389, 121873.	6.5	60
11	Bioflocculants from hydrolysates of corn stover using isolated strain Ochrobactium ciceri W2. Bioresource Technology, 2013, 145, 259-263.	4.8	58
12	Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.) Trin. ex Steud. Ecotoxicology and Environmental Safety, 2018, 149, 43-50.	2.9	53
13	Arbuscular mycorrhizal fungi effect growth and photosynthesis of <i>Phragmites australis</i> (Cav.) Trin ex. Steudel under copper stress. Plant Biology, 2020, 22, 62-69.	1.8	50
14	Effect of plant species compositions on performance of lab-scale constructed wetland through investigating photosynthesis and microbial communities. Bioresource Technology, 2017, 229, 196-203.	4.8	49
15	Self-assembly biochar colloids mycelial pellet for heavy metal removal from aqueous solution. Chemosphere, 2020, 242, 125182.	4.2	48
16	Complete genome sequence of Arthrobacter sp. ZXY-2 associated with effective atrazine degradation and salt adaptation. Journal of Biotechnology, 2017, 248, 43-47.	1.9	45
17	Pseudomonas sp. ZXY-1, a newly isolated and highly efficient atrazine-degrading bacterium, and optimization of biodegradation using response surface methodology. Journal of Environmental Sciences, 2017, 54, 152-159.	3.2	45
18	Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures. Bioresource Technology, 2010, 101, 6622-6629.	4.8	43

LI WANG

#	Article	IF	CITATIONS
19	Start-up of a two-stage bioaugmented anoxic–oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations. Bioresource Technology, 2009, 100, 3483-3488.	4.8	41
20	Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. Journal of Environmental Management, 2017, 197, 448-455.	3.8	39
21	Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (<i>Oryza sativa</i> L.). Journal of the Science of Food and Agriculture, 2017, 97, 2919-2925.	1.7	39
22	ls resource allocation and grain yield of rice altered by inoculation with arbuscular mycorrhizal fungi?. Journal of Plant Ecology, 2015, 8, 436-448.	1.2	38
23	Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro- and macroelements uptake in Phragmites australis. Environmental Science and Pollution Research, 2017, 24, 3593-3607.	2.7	35
24	Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere, 2017, 187, 221-229.	4.2	35
25	Self-immobilized biomixture with pellets of Aspergillus niger Y3 and Arthrobacter. sp ZXY-2 to remove atrazine in water: A bio-functions integration system. Science of the Total Environment, 2019, 689, 875-882.	3.9	35
26	Effects of arbuscular mycorrhizal fungi on the growth and toxic element uptake of Phragmites australis (Cav.) Trin. ex Steud under zinc/cadmium stress. Ecotoxicology and Environmental Safety, 2021, 213, 112023.	2.9	32
27	FeOx@graphitic carbon core–shell embedded in microporous N-doped biochar activated peroxydisulfate for removal of Bisphenol A: Multiple active sites induced non-radical/radical mechanism. Chemical Engineering Journal, 2022, 438, 135552.	6.6	30
28	Characterization of fly ash ceramic pellet for phosphorus removal. Journal of Environmental Management, 2017, 189, 67-74.	3.8	28
29	Effects of Arbuscular Mycorrhizal Fungi on N2O Emissions from Rice Paddies. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	24
30	Arbuscular mycorrhiza improved phosphorus efficiency in paddy fields. Ecological Engineering, 2016, 95, 64-72.	1.6	24
31	Novel selfâ€immobilized biomass mixture based on mycelium pellets for wastewater treatment: A review. Water Environment Research, 2019, 91, 93-100.	1.3	23
32	Recent advances in responses of arbuscular mycorrhizal fungi - Plant symbiosis to engineered nanoparticles. Chemosphere, 2022, 286, 131644.	4.2	23
33	Sorption mechanisms of antibiotic sulfamethazine (SMT) on magnetite-coated biochar: pH-dependence and redox transformation. Chemosphere, 2021, 268, 128805.	4.2	21
34	Effects of earthworms and arbuscular mycorrhizal fungi on improvement of fertility and microbial communities of soils heavily polluted by cadmium. Chemosphere, 2022, 286, 131567.	4.2	20
35	Seedling performance of Phragmites australis (Cav.) Trin ex. Steudel in the presence of arbuscular mycorrhizal fungi. Journal of Applied Microbiology, 2014, 116, 1593-1606.	1.4	19
36	Reducing nitrogen runoff from paddy fields with arbuscular mycorrhizal fungi under different fertilizer regimes. Journal of Environmental Sciences, 2016, 46, 92-100.	3.2	19

LI WANG

#	Article	IF	CITATIONS
37	Characterisation of an efficient atrazine-degrading bacterium, Arthrobacter sp. ZXY-2: an attempt to lay the foundation for potential bioaugmentation applications. Biotechnology for Biofuels, 2018, 11, 113.	6.2	19
38	Effects of vegetative-periodic-induced rhizosphere variation on the uptake and translocation of metals in Phragmites australis (Cav.) Trin ex. Steudel growing in the Sun Island Wetland. Ecotoxicology, 2013, 22, 608-618.	1,1	18
39	Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?. Journal of Environmental Sciences, 2015, 33, 211-218.	3.2	18
40	Evaluation of bioaugmentation using multiple life cycle assessment approaches: A case study of constructed wetland. Bioresource Technology, 2017, 244, 407-415.	4.8	18
41	Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environmental Pollution, 2021, 272, 115980.	3.7	18
42	Coating magnetite alters the mechanisms and site energy for sulfonamide antibiotic sorption on biochar. Journal of Hazardous Materials, 2021, 409, 125024.	6.5	13
43	Bioflocculants from isolated strain or mixed culture: Role of phosphate salts and Ca2+ ions. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 527-532.	2.7	12
44	Modeling the effects of historical and future land use/land coverÂchange dynamics on the hydrological response of Ashi watershed, northeastern China. Environment, Development and Sustainability, 2021, 23, 7883-7912.	2.7	12
45	The effect of Funnelliformis mosseae inoculation on the phytoremediation of atrazine by the aquatic plant Canna indica L. var. flava Roxb RSC Advances, 2016, 6, 22538-22549.	1.7	11
46	Optimization of culturing conditions for isolated Arthrobacter sp. ZXY-2, an effective atrazine-degrading and salt-adaptive bacterium. RSC Advances, 2017, 7, 33177-33184.	1.7	11
47	Seasonal variation and influence factors of organophosphate esters in air particulate matter of a northeastern Chinese test home. Science of the Total Environment, 2020, 740, 140048.	3.9	11
48	Pollution tolerant protozoa in polluted wetland. Bioresource Technology, 2017, 240, 115-122.	4.8	10
49	Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88. Journal of Microbiology, 2013, 51, 174-182.	1.3	9
50	Tracking composition of microbial communities for simultaneous nitrification and denitrification in polyurethane foam. Water Science and Technology, 2014, 69, 1788-1797.	1.2	9
51	Sulfate reduction and denitrifying sulfide removal as a natural remediation process in an inland river. Ecological Engineering, 2014, 71, 605-609.	1.6	8
52	Phenotypic plasticity in rice: responses to fertilization and inoculation with arbuscular mycorrhizal fungi. Journal of Plant Ecology, 0, , rtv031.	1.2	8
53	Effects of <i>Funnelliformis mosseae</i> inoculation on alleviating atrazine damage in <i>Canna indica</i> L. var. <i>flava</i> Roxb International Journal of Phytoremediation, 2017, 19, 46-55.	1.7	8
54	Evidence and impact of map error on land use and land cover dynamics in Ashi River watershed using intensity analysis. PLoS ONE, 2020, 15, e0229298.	1.1	8

LI WANG

#	Article	IF	CITATIONS
55	Effect of Aridification on the Replacement of Zonic Species, Stipa baicalensis Roshev., by Azonic Species, Leymus chinensis Tzvel., in the Steppe of China. Bulletin of Environmental Contamination and Toxicology, 2009, 83, 548-552.	1.3	7
56	Response of Arbuscular Mycorrhizal Fungi to Hydrologic Gradients in the Rhizosphere ofPhragmites australis(Cav.) Trin ex. Steudel Growing in the Sun Island Wetland. BioMed Research International, 2015, 2015, 1-9.	0.9	7
57	How a functional soil animal-earthworm affect arbuscular mycorrhizae-assisted phytoremediation in metals contaminated soil?. Journal of Hazardous Materials, 2022, 435, 128991.	6.5	7
58	Characterization of the Microbial Community in the Rhizosphere of<i>Phragmites australis</i>(Cav.) Trin ex. Steudel Growing in the Sun Island Wetland . Water Environment Research, 2014, 86, 258-268.	1.3	6
59	Effects of arbuscular mycorrhizal fungi on CH ₄ emissions from rice paddies. International Journal of Phytoremediation, 2017, 19, 39-45.	1.7	6
60	Can Cd translocation in Oryza sativa L. be attenuated by arbuscular mycorrhizal fungi in the presence of EDTA?. Environmental Science and Pollution Research, 2018, 25, 9380-9390.	2.7	6
61	Bioaugmentation as a tool to accelerate the start-up of anoxic-oxic process in a full-scale municipal wastewater treatment plant at low temperature. International Journal of Environment and Pollution, 2009, 37, 205.	0.2	5
62	Application of Life Cycle Assessment in Agricultural Circular Economy. Applied Mechanics and Materials, 0, 260-261, 1086-1091.	0.2	5
63	Degradation of atrazine from the riparian zone with a PEC system based on an anode of N–S–TiO ₂ nanocrystal-modified TiO ₂ nanotubes and an activated carbon photocathode. RSC Advances, 2016, 6, 89994-90001.	1.7	5
64	The speciation and distribution characteristics of Cu in <i>Phragmites australis</i> (Cav.) Trin ex. Steudel. Plant Biology, 2019, 21, 873-881.	1.8	5
65	Asymmetric interaction and concurrent remediation of copper and atrazine by Acorus tatarinowii in an aquatic system. Journal of Hazardous Materials, 2022, 435, 128888.	6.5	5
66	Multicausal Analysis on Water Deterioration Processes Present in a Drinking Water Treatment System. Water Environment Research, 2013, 85, 232-238.	1.3	3
67	Assessment of water quality in Little Vermillion River watershed using principal component and nearest neighbor analyses. Water Science and Technology: Water Supply, 2015, 15, 327-338.	1.0	3
68	Transformation of oil and hexadecane in soil by microbial preparations and earthworms. Bioremediation Journal, 2021, 25, 159-168.	1.0	2
69	Dynamic changes of the ecological environment quality in a river basin: a case study of the main stream of Songhua river basin. Water Science and Technology, 2011, 64, 1920-1925.	1.2	1
70	Reduction Efficacy of Activated Sludge by Electrochemical Oxidation. Advanced Materials Research, 0, 610-613, 2255-2258.	0.3	1
71	Research Progress of River Water Quality Simulation. Advanced Materials Research, 2012, 610-613, 894-899.	0.3	0
72	Effects of Arbuscular mycorrhizal fungi (AMF) on the growth of wheat. Acta Ecologica Sinica, 2014, 34, .	0.0	0