Xiaohui Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7497425/publications.pdf Version: 2024-02-01

Χιλομιμ ΥμλΝ

#	Article	IF	CITATIONS
1	rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study. Genomics, Proteomics and Bioinformatics, 2021, 19, 619-628.	3.0	396
2	Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram. IScience, 2021, 24, 102373.	1.9	61
3	A Robust and Rapid Candidate Gene Mapping Pipeline Based on M2 Populations. Frontiers in Plant Science, 2021, 12, 681816.	1.7	6
4	MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology. Horticulture Research, 2021, 8, 172.	2.9	7
5	Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nature Communications, 2021, 12, 5445.	5.8	64
6	A Variational Bayesian Framework for Cluster Analysis in a Complex Network. IEEE Transactions on Knowledge and Data Engineering, 2020, 32, 2115-2128.	4.0	54
7	High-Throughput Phenotyping of Morphological Seed and Fruit Characteristics Using X-Ray Computed Tomography. Frontiers in Plant Science, 2020, 11, 601475.	1.7	19
8	Chromosome-scale genome assembly of sweet cherry (Prunus avium L.) cv. Tieton obtained using long-read and Hi-C sequencing. Horticulture Research, 2020, 7, 122.	2.9	44
9	A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model. Communications Biology, 2020, 3, 502.	2.0	36
10	Local R-Symmetry Co-Occurrence: Characterising Leaf Image Patterns for Identifying Cultivars. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, PP, 1-1.	1.9	5
11	Combining structured and unstructured data for predictive models: a deep learning approach. BMC Medical Informatics and Decision Making, 2020, 20, 280.	1.5	99
12	KAML: improving genomic prediction accuracy of complex traits using machine learning determined parameters. Genome Biology, 2020, 21, 146.	3.8	51
13	Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52, 428-436.	9.4	229
14	Genomic Analyses Reveal Evidence of Independent Evolution, Demographic History, and Extreme Environment Adaptation of Tibetan Plateau Agaricus bisporus. Frontiers in Microbiology, 2019, 10, 1786.	1.5	14
15	Pleurotus eryngii Genomes Reveal Evolution and Adaptation to the Gobi Desert Environment. Frontiers in Microbiology, 2019, 10, 2024.	1.5	19
16	3D Morphological Processing for Wheat Spike Phenotypes Using Computed Tomography Images. Remote Sensing, 2019, 11, 1110.	1.8	16
17	Rapid identification of consistent novel QTLs underlying long-juvenile trait in soybean by multiple genetic populations and genotyping-by-sequencing. Molecular Breeding, 2019, 39, 1.	1.0	16
18	Multiscale Contour Steered Region Integral and Its Application for Cultivar Classification. IEEE Access, 2019, 7, 69087-69100.	2.6	12

Χιαομυι Υυαν

#	Article	IF	CITATIONS
19	Factors Affecting the Accuracy of Genomic Selection for Agricultural Economic Traits in Maize, Cattle, and Pig Populations. Frontiers in Genetics, 2019, 10, 189.	1.1	127
20	A gene–phenotype relationship extraction pipeline from the biomedical literature using a representation learning approach. Bioinformatics, 2018, 34, i386-i394.	1.8	35
21	Quantitative Trait Locus Mapping of Flowering Time and Maturity in Soybean Using Next-Generation Sequencing-Based Analysis. Frontiers in Plant Science, 2018, 9, 995.	1.7	57
22	Efficiently predicting large-scale protein-protein interactions using MapReduce. Computational Biology and Chemistry, 2017, 69, 202-206.	1.1	13
23	GmILPA1, Encoding an anaphase-promoting complex-like Protein, affects Leaf Petiole Angle. Plant Physiology, 2017, 174, pp.00074.2017.	2.3	33
24	Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics, 2017, 49, 773-779.	9.4	341
25	Identifying overlapping protein complexes in yeast protein interaction network via fuzzy clustering. , 2017, , .		0
26	Cascade word embedding to sentence embedding: A class label enhanced approach to phenotype extraction. , 2017, , .		2
27	Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology, 2017, 18, 161.	3.8	363
28	Quantitative Trait Locus Mapping of Soybean Maturity Gene <i>E6</i> . Crop Science, 2017, 57, 2547-2554.	0.8	29
29	Bar charts detection and analysis in biomedical literature of PubMed Central. AMIA Annual Symposium proceedings, 2017, 2017, 859-865.	0.2	3
30	InDel marker detection by integration of multiple softwares using machine learning techniques. BMC Bioinformatics, 2016, 17, 548.	1.2	8
31	A Global Analysis of the Polygalacturonase Gene Family in Soybean (Glycine max). PLoS ONE, 2016, 11, e0163012.	1.1	17
32	Multiscale Crossing Representation Using Combined Feature of Contour and Venation for Leaf Image Identification. , 2016, , .		8
33	Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens. Frontiers in Plant Science, 2015, 6, 791.	1.7	22
34	QTLMiner: QTL database curation by mining tables in literature. Bioinformatics, 2015, 31, 1689-1691.	1.8	8
35	PopGeV: a web-based large-scale population genome browser: Fig. 1 Bioinformatics, 2015, 31, 3048-3050.	1.8	3
36	QTL mapping for flowering time in different latitude in soybean. Euphytica, 2015, 206, 725-736.	0.6	27

XIAOHUI YUAN

#	Article	IF	CITATIONS
37	<i>GmCOL1a</i> and <i>GmCOL1b</i> Function as Flowering Repressors in Soybean Under Long-Day Conditions. Plant and Cell Physiology, 2015, 56, 2409-2422.	1.5	73
38	GmmiR156b overexpression delays flowering time in soybean. Plant Molecular Biology, 2015, 89, 353-363.	2.0	49
39	GmFT4, a Homolog of FLOWERING LOCUS T, Is Positively Regulated by E1 and Functions as a Flowering Repressor in Soybean. PLoS ONE, 2014, 9, e89030.	1.1	115
40	GmFT2a and GmFT5a Redundantly and Differentially Regulate Flowering through Interaction with and Upregulation of the bZIP Transcription Factor GmFDL19 in Soybean. PLoS ONE, 2014, 9, e97669.	1.1	117
41	Allelic Combinations of Soybean Maturity Loci E1, E2, E3 and E4 Result in Diversity of Maturity and Adaptation to Different Latitudes. PLoS ONE, 2014, 9, e106042.	1.1	103
42	A New Dominant Gene <i>E9</i> Conditions Early Flowering and Maturity in Soybean. Crop Science, 2014, 54, 2529-2535.	0.8	173
43	Genetic Variation in Soybean at the Maturity Locus E4 Is Involved in Adaptation to Long Days at High Latitudes. Agronomy, 2013, 3, 117-134.	1.3	86
44	Overview of Mollisols in the world: Distribution, land use and management. Canadian Journal of Soil Science, 2012, 92, 383-402.	0.5	239
45	Molecular identification of genes controlling flowering time, maturity, and photoperiod response in sovbean. Plant Systematics and Evolution, 2012, 298, 1217-1227.	0.3	61