Lai Chang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7497274/publications.pdf Version: 2024-02-01

		8732	14702
325	20,391	75	127
papers	citations	h-index	g-index
327	327	327	10201
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Advanced Engineering Materials, 2019, 21, 1801215.	1.6	659
2	Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 593, 170-177.	2.6	566
3	Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review. Advanced Engineering Materials, 2016, 18, 463-475.	1.6	564
4	A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Materialia, 2015, 95, 74-82.	3.8	518
5	Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties. Acta Materialia, 2014, 76, 13-22.	3.8	483
6	Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia, 2011, 65, 21-24.	2.6	482
7	Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Materialia, 2016, 113, 56-67.	3.8	441
8	Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corrosion Science, 2016, 102, 484-489.	3.0	401
9	Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corrosion Science, 2016, 111, 703-710.	3.0	325
10	Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Advanced Engineering Materials, 2018, 20, 1700842.	1.6	315
11	Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Materialia, 2017, 126, 58-66.	3.8	278
12	Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. Journal of Alloys and Compounds, 2018, 735, 1414-1421.	2.8	267
13	Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Advanced Engineering Materials, 2020, 22, 1901258.	1.6	243
14	Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 350-356.	2.6	235
15	Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Materials Letters, 2015, 142, 38-41.	1.3	222
16	The effect of atmosphere on the structure and properties of a selective laser melted Al–12Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 370-375.	2.6	209
17	A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Progress in Materials Science, 2019, 105, 100576.	16.0	209
18	Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Materials Science and Engineering Reports, 2021, 146, 100648.	14.8	209

#	Article	IF	CITATIONS
19	Effect of Powder Particle Shape on the Properties of In Situ Ti–TiB Composite Materials Produced by Selective Laser Melting. Journal of Materials Science and Technology, 2015, 31, 1001-1005.	5.6	201
20	Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline. Corrosion Science, 2017, 123, 289-296.	3.0	188
21	Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B: Environmental, 2017, 204, 537-547.	10.8	173
22	Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding. Surface and Coatings Technology, 2018, 334, 274-285.	2.2	172
23	A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2020, 32, e2000385.	11.1	169
24	Evaluation of mechanical and wear properties of Ti xNb 7Fe alloys designed for biomedical applications. Materials and Design, 2016, 111, 592-599.	3.3	166
25	Corrosion Behaviour of Selective Laser Melted Ti-TiB Biocomposite in Simulated Body Fluid. Electrochimica Acta, 2017, 232, 89-97.	2.6	166
26	Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Materialia, 2018, 150, 1-15.	3.8	166
27	Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. Water Research, 2019, 167, 115110.	5.3	165
28	Processing and properties of topologically optimised biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 268-278.	2.6	164
29	Amorphous Fe78Si9B13 alloy: An efficient and reusable photo-enhanced Fenton-like catalyst in degradation of cibacron brilliant red 3B-A dye under UV–vis light. Applied Catalysis B: Environmental, 2016, 192, 46-56.	10.8	161
30	Disordered Atomic Packing Structure of Metallic Glass: Toward Ultrafast Hydroxyl Radicals Production Rate and Strong Electron Transfer Ability in Catalytic Performance. Advanced Functional Materials, 2017, 27, 1702258.	7.8	160
31	Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing. Acta Materialia, 2017, 131, 499-510.	3.8	158
32	Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. Journal of Alloys and Compounds, 2017, 692, 892-897.	2.8	152
33	A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO ₂ : ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration. Journal of Materials Chemistry A, 2020, 8, 349-357.	5.2	151
34	Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals, 2020, 10, 1139.	1.0	151
35	Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Materials & Design, 2015, 76, 47-54.	5.1	149
36	Influence of Nb on the β → α″ martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Materials Science and Engineering C, 2016, 60, 503-510.	3.8	144

#	Article	IF	CITATIONS
37	Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review. Applied Catalysis B: Environmental, 2019, 248, 405-422.	10.8	141
38	Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 370-379.	2.6	134
39	High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scripta Materialia, 2007, 57, 101-104.	2.6	133
40	Selective laser melting of Ti–35Nb composite from elemental powder mixture: Microstructure, mechanical behavior and corrosion behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 214-224.	2.6	131
41	Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition. Materials and Design, 2016, 97, 279-286.	3.3	130
42	Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Composites Part B: Engineering, 2021, 209, 108605.	5.9	130
43	High specific strength and stiffness structures produced using selective laser melting. Materials & Design, 2014, 63, 783-788.	5.1	127
44	Electron Beam Melted Beta-type Ti–24Nb–4Zr–8Sn Porous Structures With High Strength-to-Modulus Ratio. Journal of Materials Science and Technology, 2016, 32, 505-508.	5.6	125
45	Ultrahigh-performance TiNi shape memory alloy by 4D printing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138166.	2.6	122
46	Nanocrystalline Co _{0.85} Se Anchored on Graphene Nanosheets as a Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 30703-30710.	4.0	118
47	Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting. Scripta Materialia, 2018, 153, 99-103.	2.6	118
48	Bimodal titanium alloys with ultrafine lamellar eutectic structure fabricated by semi-solid sintering. Acta Materialia, 2017, 132, 491-502.	3.8	117
49	Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Composites Part B: Engineering, 2021, 217, 108912.	5.9	117
50	Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. Journal of Materials Research, 2014, 29, 1941-1950.	1.2	116
51	Compelling Rejuvenated Catalytic Performance in Metallic Glasses. Advanced Materials, 2018, 30, e1802764.	11.1	115
52	Heat Treatment Degrading the Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy. Journal of the Electrochemical Society, 2017, 164, C428-C434.	1.3	112
53	Ultrafast activation efficiency of three peroxides by Fe78Si9B13 metallic glass under photo-enhanced catalytic oxidation: A comparative study. Applied Catalysis B: Environmental, 2018, 221, 108-118.	10.8	110
54	Laves phase precipitation in Ti-Zr-Fe-Cr alloys with high strength and large plasticity. Materials and Design, 2018, 154, 228-238.	3.3	110

#	Article	IF	CITATIONS
55	Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-l² titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1686-1693.	2.6	105
56	Prototypes for Bone Implant Scaffolds Designed via Topology Optimization and Manufactured by Solid Freeform Fabrication. Advanced Engineering Materials, 2010, 12, 1106-1110.	1.6	103
57	Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting. Materials and Design, 2018, 146, 239-248.	3.3	101
58	Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Materials Technology, 2016, 31, 66-76.	1.5	97
59	Transformation-induced plasticity and high strength in beta titanium alloy manufactured by selective laser melting. Materialia, 2019, 6, 100299.	1.3	91
60	Corrosion behavior and characteristics of passive films of laser powder bed fusion produced Ti–6Al–4V in dynamic Hank's solution. Materials and Design, 2021, 208, 109907.	3.3	90
61	Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure. Materials & Design, 2015, 79, 1-5.	5.1	89
62	A Selfâ€Supported Highâ€Entropy Metallic Glass with a Nanosponge Architecture for Efficient Hydrogen Evolution under Alkaline and Acidic Conditions. Advanced Functional Materials, 2021, 31, 2101586.	7.8	89
63	Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. Journal of Materials Science and Technology, 2022, 101, 205-216.	5.6	89
64	High-strength β stabilized Ti-Nb-Fe-Cr alloys with large plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 368-377.	2.6	87
65	Overcoming the strength–ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy. Journal of Materials Science and Technology, 2021, 68, 112-123.	5.6	87
66	Improved hardness and wear resistance of plasma sprayed nanostructured NiCrBSi coating via short-time heat treatment. Surface and Coatings Technology, 2018, 350, 436-444.	2.2	86
67	Glass formation in a (Ti, Zr, Hf)–(Cu, Ni, Ag)–Al high-order alloy system by mechanical alloying. Journal of Materials Research, 2003, 18, 2141-2149.	1.2	85
68	Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV–Vis light. Materials and Design, 2017, 119, 244-253.	3.3	85
69	Improved Corrosion Resistance on Selective Laser Melting Produced Ti-5Cu Alloy after Heat Treatment. ACS Biomaterials Science and Engineering, 2018, 4, 2633-2642.	2.6	85
70	Ultra-sustainable Fe78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. Scientific Reports, 2016, 6, 38520.	1.6	84
71	Mechanical behavior and phase transformation of β-type Ti-35Nb-2Ta-3Zr alloy fabricated by 3D-Printing. Journal of Alloys and Compounds, 2019, 790, 117-126.	2.8	83
72	Pitting corrosion of Cu–Zr metallic glasses in hydrochloric acid solutions. Journal of Alloys and Compounds, 2008, 462, 60-67.	2.8	81

#	Article	IF	CITATIONS
73	Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes. Journal of Alloys and Compounds, 2018, 747, 648-658.	2.8	80
74	Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy. Scripta Materialia, 2007, 57, 1101-1104.	2.6	78
75	A novel kind of thin film composite nanofiltration membrane with sulfated chitosan as the active layer material. Chemical Engineering Science, 2013, 87, 152-159.	1.9	76
76	Resemblance in Corrosion Behavior of Selective Laser Melted and Traditional Monolithic \hat{I}^2 Ti-24Nb-4Zr-8Sn Alloy. ACS Biomaterials Science and Engineering, 2019, 5, 1141-1149.	2.6	75
77	Metastable pitting corrosion behavior of laser powder bed fusion produced Ti-6Al-4V in Hank's solution. Corrosion Science, 2022, 203, 110333.	3.0	75
78	Glass-forming ability of melt-spun multicomponent (Ti, Zr, Hf)–(Cu, Ni, Co)–Al alloys with equiatomic substitution. Journal of Non-Crystalline Solids, 2004, 347, 166-172.	1.5	74
79	Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 206-213.	2.6	74
80	Attractive In Situ Selfâ€Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance. Advanced Functional Materials, 2019, 29, 1807857.	7.8	74
81	Microstructure evolution and superelasticity of layer-like NiTiNb porous metal prepared by eutectic reaction. Acta Materialia, 2018, 143, 214-226.	3.8	73
82	Influence of powder properties on densification mechanism during spark plasma sintering. Scripta Materialia, 2017, 139, 96-99.	2.6	72
83	Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 280-288.	2.6	70
84	Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys. Journal of Alloys and Compounds, 2007, 428, 157-163.	2.8	70
85	Electrochemical and in vitro behavior of the nanosized composites of Ti-6Al-4V and TiO2 fabricated by friction stir process. Applied Surface Science, 2017, 423, 331-339.	3.1	68
86	Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Applied Materials Today, 2020, 19, 100543.	2.3	68
87	Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture. Journal of Materials Science and Technology, 2021, 61, 221-233.	5.6	67
88	Mechanically Alloyed Amorphous Ti ₅₀ (Cu _{0.45} Ni _{0.55}) _{44–<i>x</i>} Al _{<i>x</i>} S Alloys with Supercooled Liquid Region. Journal of Materials Research, 2002, 17, 1743-1749.	Si <sub2×4< <="" td=""><td>suboo&₂</td></sub2×4<>	suboo& ₂
89	Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 394, 204-209.	2.6	66
90	Heterogeneous photocatalytic degradation of mordant black 11 with ZnO nanoparticles under UV–Vis	2.7	66

light. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1636-1641.

#	Article	IF	CITATIONS
91	Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating. Surface and Coatings Technology, 2019, 369, 31-43.	2.2	66
92	Thermal stability and crystallization kinetics of mechanically alloyed TiCâ^•Ti-based metallic glass matrix composite. Journal of Applied Physics, 2006, 100, 033514.	1.1	65
93	Improved deformation behavior in Ti-Zr-Fe-Mn alloys comprising the C14 type Laves and β phases. Materials and Design, 2018, 160, 1059-1070.	3.3	65
94	Ductile ultrafine-grained Ti-based alloys with high yield strength. Applied Physics Letters, 2007, 91, .	1.5	64
95	Strengthening mechanism and corrosion resistance of beta-type Ti-Nb-Zr-Mn alloys. Materials Science and Engineering C, 2020, 110, 110728.	3.8	64
96	Corrosion and passivation behavior of laser powder bed fusion produced Ti-6Al-4V in static/dynamic NaCl solutions with different concentrations. Corrosion Science, 2021, 191, 109728.	3.0	64
97	High-strength silicon brass manufactured by selective laser melting. Materials Letters, 2018, 210, 169-172.	1.3	63
98	Deformation and strength characteristics of Laves phases in titanium alloys. Materials and Design, 2019, 179, 107891.	3.3	61
99	Pt nanoparticles decorated heterostructured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light. Scientific Reports, 2019, 9, 7636.	1.6	60
100	Corrosion behavior and mechanism of selective laser melted Ti35Nb alloy produced using pre-alloyed and mixed powder in Hank's solution. Corrosion Science, 2021, 189, 109609.	3.0	60
101	Study of vacancy-type defects by positron annihilation in ultrafine-grained aluminum severely deformed at room and cryogenic temperatures. Acta Materialia, 2012, 60, 4218-4228.	3.8	58
102	Photocatalytic degradation and absorption kinetics of cibacron brilliant yellow 3G-P by nanosized ZnO catalyst under simulated solar light. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 267-274.	2.7	58
103	Heterogeneous photo Fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe 78 Si 9 B 13 and Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 alloys: The influence of adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 128-136.	2.7	57
104	Superelastic behavior of in-situ eutectic-reaction manufactured high strength 3D porous NiTi-Nb scaffold. Scripta Materialia, 2020, 181, 121-126.	2.6	57
105	In-situ investigation of oxidation behaviour in high-speed steel roll material under dry and humid atmospheres. Corrosion Science, 2010, 52, 2707-2715.	3.0	55
106	Evolution of functional properties realized by increasing laser scanning speed for the selective laser melting fabricated NiTi alloy. Journal of Alloys and Compounds, 2019, 804, 220-229.	2.8	55
107	Nucleation of stress-induced martensites in a Ti/Mo-based alloy. Journal of Materials Science, 2005, 40, 2833-2836.	1.7	53
108	Dehydrogenation characteristics of Ti- and Ni/Ti-catalyzed Mg hydrides. Journal of Alloys and Compounds, 2009, 481, 152-155.	2.8	53

#	Article	IF	CITATIONS
109	Surface microstructure and mechanical properties of Ti-6Al-4V/Ag nanocomposite prepared by FSP. Materials Characterization, 2019, 153, 175-183.	1.9	52
110	Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Physical Chemistry Chemical Physics, 2021, 23, 11121-11154.	1.3	52
111	Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys. Journal of Alloys and Compounds, 2019, 792, 684-693.	2.8	51
112	Investigation of Deformation Mechanisms in β-Type Ti-35Nb-2Ta-3Zr Alloy via FSP Leading to Surface Strengthening. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4813-4818.	1.1	50
113	Strong enhancement on dye photocatalytic degradation by ball-milled TiO2: A study of cationic and anionic dyes. Journal of Materials Science and Technology, 2017, 33, 856-863.	5.6	50
114	Microstructure and mechanical properties of carbon fibers strengthened Ni-based coatings by laser cladding: The effect of carbon fiber contents. Journal of Alloys and Compounds, 2018, 744, 146-155.	2.8	50
115	Improved trade-off between strength and plasticity in titanium based metastable beta type Ti-Zr-Fe-Sn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138340.	2.6	49
116	Particle Size-Dependent Microstructure, Hardness and Electrochemical Corrosion Behavior of Atmospheric Plasma Sprayed NiCrBSi Coatings. Metals, 2019, 9, 1342.	1.0	49
117	Understanding the friction and wear mechanisms of bulk metallic glass under contact sliding. Wear, 2013, 304, 43-48.	1.5	48
118	Equiaxed Ti-based composites with high strength and large plasticity prepared by sintering and crystallizing amorphous powder. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 171-182.	2.6	48
119	Effects of Friction Stir Processing on the Phase Transformation and Microstructure of TiO2-Compounded Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5675-5679.	1.1	47
120	Strengthening mechanism of friction stir processed and post heat treated NiAl bronze alloy: Effect of rotation rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 439-446.	2.6	47
121	Spontaneous Formation of Noble―and Heavyâ€Metalâ€Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. Advanced Materials, 2018, 30, e1803351.	11.1	47
122	Nanosecond pulsed fiber laser cleaning of natural marine micro-biofoulings from the surface of aluminum alloy. Journal of Cleaner Production, 2020, 244, 118724.	4.6	47
123	Feâ€based Metallic Glasses in Functional Catalytic Applications. Chemistry - an Asian Journal, 2018, 13, 3575-3592.	1.7	46
124	Abnormal corrosion behavior of selective laser melted AlSi10Mg alloy induced by heat treatment at 300â€ [−] °C. Journal of Alloys and Compounds, 2019, 803, 314-324.	2.8	46
125	Phase interaction induced texture in a plasma sprayed-remelted NiCrBSi coating during solidification: An electron backscatter diffraction study. Surface and Coatings Technology, 2019, 358, 467-480.	2.2	46
126	Improved Wear and Corrosion Resistance of Microarc Oxidation Coatings on Ti–6Al–4V Alloy with Ultrasonic Assistance for Potential Biomedical Applications. Advanced Engineering Materials, 2021, 23, 2001433.	1.6	46

#	Article	IF	CITATIONS
127	Topological design of pentamode lattice metamaterials using a ground structure method. Materials and Design, 2021, 202, 109523.	3.3	46
128	Effects of alloyed Si on the autoclave corrosion performance and periodic corrosion kinetics in Zr–Sn–Nb–Fe–O alloys. Corrosion Science, 2015, 100, 651-662.	3.0	44
129	Effect of microstructure on corrosion behavior of a Zr–Sn–Nb–Fe–Cu–O alloy. Materials and Design, 2016, 92, 888-896.	3.3	44
130	Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Materials and Design, 2019, 181, 108064.	3.3	44
131	Highly Stable Na ₃ Fe ₂ (PO ₄) ₃ @Hard Carbon Sodium-Ion Full Cell for Low-Cost Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 1380-1387.	3.2	44
132	Strengthening mechanism and micropillar analysis of high-strength NiTi–Nb eutectic-type alloy prepared by laser powder bed fusion. Composites Part B: Engineering, 2020, 200, 108358.	5.9	44
133	Selective Laser Melting of Low-Modulus Biomedical Ti-24Nb-4Zr-8Sn Alloy: Effect of Laser Point Distance. Key Engineering Materials, 0, 520, 226-233.	0.4	43
134	Activation of peroxymonosulfate by Fe78Si9B13 metallic glass: The influence of crystallization. Journal of Alloys and Compounds, 2017, 728, 525-533.	2.8	43
135	Fe73.5Si13.5B9Cu1Nb3 metallic glass: Rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation. Materials and Design, 2018, 140, 73-84.	3.3	43
136	Microstructure evolution and electrochemical properties of TiO2/Ti-35Nb-2Ta-3Zr micro/nano-composites fabricated by friction stir processing. Materials and Design, 2019, 169, 107680.	3.3	43
137	Formation of zigzag-shaped {1 1 2}ã€^1 1 1〉 β mechanical twins in Ti–24.5 Nb–0.7 Ta–2 Zr–1.4 O Materialia, 2012, 66, 211-214.	alloy _o Scrip	ota 42
138	Reaction diffusion rate coefficient derivation by isothermal heat treatment in spark plasma sintering system. Scripta Materialia, 2017, 134, 91-94.	2.6	42
139	Flow Consistency Between Non-Darcy Flow in Fracture Network and Nonlinear Diffusion in Matrix to Gas Production Rate in Fractured Shale Gas Reservoirs. Transport in Porous Media, 2016, 111, 97-121.	1.2	41
140	Corrosion behavior of non-equilibrium Zr-Sn-Nb-Fe-Cu-O alloys in high-temperature 0.01â€⁻M LiOH aqueous solution and degradation of the surface oxide films. Corrosion Science, 2018, 136, 221-230.	3.0	41
141	A Hydrogen-Initiated Chemical Epitaxial Growth Strategy for In-Plane Heterostructured Photocatalyst. ACS Nano, 2020, 14, 17505-17514.	7.3	41
142	Unprecedented enhancement in strength-plasticity synergy of (TiC+Al6MoTi+Mo)/Al cermet by multiple length-scale microstructure stimulated synergistic deformation. Composites Part B: Engineering, 2021, 225, 109265.	5.9	41
143	Aligning potential differences within carbon nitride based photocatalysis for efficient solar energy harvesting. Nano Energy, 2021, 89, 106357.	8.2	41
144	Zr–Sn–Nb–Fe–Si–O alloy for fuel cladding candidate: Processing, microstructure, corrosion resistance and tensile behavior. Corrosion Science, 2015, 100, 332-340.	3.0	39

#	Article	IF	CITATIONS
145	Near-Net Forming Complex Shaped Zr-Based Bulk Metallic Glasses by High Pressure Die Casting. Materials, 2018, 11, 2338.	1.3	39
146	Refined microstructure and enhanced wear resistance of titanium matrix composites produced by selective laser melting. Optics and Laser Technology, 2021, 134, 106644.	2.2	39
147	Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires. Scientific Reports, 2016, 6, 23905.	1.6	38
148	Effect of low-temperature pre-deformation on precipitation behavior and microstructure of a Zr-Sn-Nb-Fe-Cu-O alloy during fabrication. Journal of Nuclear Science and Technology, 2016, 53, 496-507.	0.7	38
149	Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. Applied Catalysis B: Environmental, 2022, 309, 121263.	10.8	38
150	Understanding the Behavior of Advanced High-Strength Steels Using Atom Probe Tomography. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3958-3971.	1.1	37
151	K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery. Journal of Alloys and Compounds, 2019, 784, 939-946.	2.8	37
152	Microstructure and properties of equiatomic Ti–Ni alloy fabricated by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138586.	2.6	37
153	pH dependent passivation behavior of niobium in acid fluoride-containing solutions. Electrochimica Acta, 2018, 285, 172-184.	2.6	36
154	Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder. Journal of Materials Science and Technology, 2022, 105, 1-16.	5.6	36
155	Synergistic optimization in solidification microstructure and mechanical performance of novel (TiC N) Tj ETQq1 Manufacturing, 2022, 155, 106843.	1 0.784314 3.8	rgBT /Overlo 36
156	Green lightweight lead-free Gd2O3/epoxy nanocomposites with outstanding X-ray attenuation performance. Composites Science and Technology, 2018, 163, 89-95.	3.8	35
157	Chemically dealloyed Fe-based metallic glass with void channels-like architecture for highly enhanced peroxymonosulfate activation in catalysis. Journal of Alloys and Compounds, 2019, 785, 642-650.	2.8	35
158	Effects of electroshock treatment on microstructure evolution and texture distribution of near-Î ² titanium alloy manufactured by directed energy deposition. Materials Characterization, 2020, 161, 110137.	1.9	35
159	Deformation mechanisms in surface nano-crystallization of low elastic modulus Ti6Al4V/Zn composite during severe plastic deformation. Scripta Materialia, 2018, 157, 142-147.	2.6	34
160	Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting. Journal of Materials Science and Technology, 2018, 34, 1127-1131.	5.6	33
161	Microstructures and mechanical behavior of beta-type Ti-25V-15Cr-0.2Si titanium alloy coating by laser cladding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 796, 140063.	2.6	32
162	Amphoteric composite membranes for nanofiltration prepared from sulfated chitosan crosslinked with hexamethylene diisocyanate. Chemical Engineering Journal, 2013, 234, 132-139.	6.6	31

#	Article	IF	CITATIONS
163	Achieving ultrahigh-strength in beta-type titanium alloy by controlling the melt pool mode in selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141731.	2.6	31
164	Effect of structural heterogeneity on serrated flow behavior of Zr-based metallic glass. Journal of Alloys and Compounds, 2018, 766, 908-917.	2.8	30
165	Phase separation and enhanced wear resistance of Cu88Fe12 immiscible coating prepared by laser cladding. Journal of Materials Research and Technology, 2019, 8, 2001-2010.	2.6	30
166	Corrosion Behavior of Selective Laser Melted AlSi10Mg Alloy in NaCl Solution and Its Dependence on Heat Treatment. Acta Metallurgica Sinica (English Letters), 2020, 33, 327-337.	1.5	30
167	Evaluation of microstructure variation of TC11 alloy after electroshocking treatment. Journal of Materials Research and Technology, 2020, 9, 2455-2466.	2.6	30
168	Magnetically separable Z-scheme FeSiB metallic glass/g-C3N4 heterojunction photocatalyst with high degradation efficiency at universal pH conditions. Applied Surface Science, 2021, 540, 148401.	3.1	30
169	Multi-scale hybrid modified coatings on titanium implants for non-cytotoxicity and antibacterial properties. Nanoscale, 2021, 13, 10587-10599.	2.8	30
170	Solid particle erosion of alumina ceramics at elevated temperature. Materials Chemistry and Physics, 2013, 139, 765-769.	2.0	29
171	Excellent Performance of Fe78Si9B13 Metallic Glass for Activating Peroxymonosulfate in Degradation of Naphthol Green B. Metals, 2017, 7, 273.	1.0	29
172	TEM characterization on microstructure of Ti–6Al–4V/Ag nanocomposite formed by friction stir processing. Materialia, 2018, 3, 139-144.	1.3	29
173	Superelastic response of low-modulus porous beta-type Ti-35Nb-2Ta-3Zr alloy fabricated by laser powder bed fusion. Additive Manufacturing, 2020, 34, 101264.	1.7	29
174	Tailoring surface morphology of heterostructured iron-based Fenton catalyst for highly improved catalytic activity. Journal of Colloid and Interface Science, 2021, 581, 860-873.	5.0	29
175	A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering. Scientific Reports, 2016, 6, 23467.	1.6	28
176	Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance. Journal of Materials Science and Technology, 2022, 131, 68-81.	5.6	28
177	Influence of powder shape on atomic diffusivity and resultant densification mechanisms during spark plasma sintering. Journal of Alloys and Compounds, 2019, 802, 600-608.	2.8	27
178	Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting. Additive Manufacturing, 2020, 32, 101060.	1.7	27
179	Surface characteristics and corrosion resistance of spangle on hot-dip galvanized coating. Journal of Alloys and Compounds, 2017, 728, 1002-1008.	2.8	26
180	Microstructure, Texture Evolution and Mechanical Properties of VT3-1 Titanium Alloy Processed by Multi-Pass Drawing and Subsequent Isothermal Annealing. Metals, 2017, 7, 131.	1.0	26

#	Article	IF	CITATIONS
181	Cyclic direct shear behaviors of frozen soil–structure interface under constant normal stiffness condition. Cold Regions Science and Technology, 2014, 102, 52-62.	1.6	25
182	X-ray protection, surface chemistry and rheology of ball-milled submicron Gd2O3 aqueous suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 501, 75-82.	2.3	25
183	Surface reactivation of FeNiPC metallic glass: A strategy for highly enhanced catalytic behavior. Journal of Physics and Chemistry of Solids, 2019, 132, 89-98.	1.9	25
184	Role of Boron in Enhancing Electron Delocalization to Improve Catalytic Activity of Fe-Based Metallic Glasses for Persulfate-Based Advanced Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 44789-44797.	4.0	25
185	Effects of shot peening on microstructure evolution and mechanical properties of surface nanocrystal layer on titanium matrix composite. Materials and Design, 2021, 206, 109760.	3.3	25
186	Cyclic direct shear behaviors of an artificial frozen soil-structure interface under constant normal stress and sub-zero temperature. Cold Regions Science and Technology, 2017, 133, 70-81.	1.6	24
187	Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability. Ionics, 2019, 25, 1083-1090.	1.2	24
188	Ultrafine copper nanoclusters and single sites for Fenton-like reactions with high atom utilities. Environmental Science: Nano, 2020, 7, 2595-2606.	2.2	24
189	Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons. Journal of Materials Science and Technology, 2021, 61, 159-168.	5.6	24
190	Topological design of pentamode metamaterials with additive manufacturing. Computer Methods in Applied Mechanics and Engineering, 2021, 377, 113708.	3.4	24
191	A laser-based synthesis route for magnetic metallic glass nanoparticles. Scripta Materialia, 2021, 203, 114094.	2.6	24
192	Microstructure evolution and mechanical property response of TC11 titanium alloy under electroshock treatment. Materials and Design, 2021, 198, 109322.	3.3	23
193	Selective laser melting of Ti-TiN composites: Formation mechanism and corrosion behaviour in H2SO4/HCl mixed solution. Journal of Alloys and Compounds, 2021, 863, 158721.	2.8	23
194	Enhancing the acid orange dye degradation efficiency of Mg-based glassy alloys with introducing porous structure and zinc oxide. Journal of Alloys and Compounds, 2020, 831, 154817.	2.8	23
195	Formation of thick nanocrystalline surface layer on copper during oscillating sliding. Materials Letters, 2012, 68, 432-434.	1.3	22
196	Deformation twinning and localized amorphization in nanocrystalline tantalum induced by sliding friction. Materials Letters, 2014, 127, 4-7.	1.3	22
197	Impacts of surface roughness and loading conditions on cyclic direct shear behaviors of an artificial frozen silt–structure interface. Cold Regions Science and Technology, 2014, 106-107, 183-193.	1.6	22
198	Comparison of catalytic activity between Au(110) and Au(111) for the electro-oxidation of methanol and formic acid: Experiment and density functional theory calculation. Electrochimica Acta, 2017, 256, 129-138.	2.6	22

#	Article	IF	CITATIONS
199	Novel Approach of Electroshock Treatment for Defect Repair in Near-β Titanium Alloy Manufactured via Directed Energy Deposition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 457-461.	1.1	22
200	Remediation of industrial contaminated water with arsenic and nitrate by mass-produced Fe-based metallic glass: Toward potential industrial applications. Sustainable Materials and Technologies, 2019, 22, e00126.	1.7	21
201	Calculation of Oxygen Diffusion Coefficients in Oxide Films Formed on Low-Temperature Annealed Zr Alloys and Their Related Corrosion Behavior. Metals, 2019, 9, 850.	1.0	21
202	Nanoindentation characterization on local plastic response of Ti-6Al-4V under high-load spherical indentation. Journal of Materials Research and Technology, 2019, 8, 3434-3442.	2.6	21
203	Fast rejuvenation in bulk metallic glass induced by ultrasonic vibration precompression. Intermetallics, 2020, 118, 106687.	1.8	21
204	Phase stability and consolidation of glassy/nanostructured Al85Ni9Nd4Co2 alloys. Journal of Materials Research, 2007, 22, 1145-1155.	1.2	20
205	Grain coarsening behavior in a nanocrystalline copper subjected to sliding friction. Materials Letters, 2014, 123, 261-264.	1.3	20
206	Effects of different processing conditions on super-elasticity and low modulus properties of metastable β-type Ti-35Nb-2Ta-3Zr alloy. Vacuum, 2017, 146, 164-169.	1.6	20
207	Additive manufacturing techniques and their biomedical applications. Family Medicine and Community Health, 2017, 5, 286-298.	0.6	20
208	Synergistic function of iron and cobalt in metallic glasses for highly improving persulfate activation in water treatment. Journal of Alloys and Compounds, 2020, 822, 153574.	2.8	20
209	In-situ Fe2P reinforced bulk Cu–Fe immiscible alloy with nanotwinned Cu produced by selective laser melting. Journal of Alloys and Compounds, 2020, 838, 155592.	2.8	20
210	Overcoming the limitation of in-situ microstructural control in laser additive manufactured Ti–6Al–4V alloy to enhanced mechanical performance by integration of synchronous induction heating. Journal of Materials Science and Technology, 2021, 94, 32-46.	5.6	20
211	Surface Functionalization of Biomedical Ti-6Al-7Nb Alloy by Liquid Metal Dealloying. Nanomaterials, 2020, 10, 1479.	1.9	19
212	Phase Transformation-Induced Improvement in Hardness and High-Temperature Wear Resistance of Plasma-Sprayed and Remelted NiCrBSi/WC Coatings. Metals, 2020, 10, 1688.	1.0	19
213	Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy. Journal of Materials Processing Technology, 2021, 296, 117177.	3.1	19
214	Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms. Journal of Materials Science and Technology, 2022, 104, 81-87.	5.6	19
215	Electroshock treatment dependent microstructural evolution and mechanical properties of near-β titanium alloy manufactured by directed energy deposition. Materials and Design, 2021, 212, 110286.	3.3	19
216	Facile preparation of superhydrophobic structures on Al alloys surfaces with superior corrosion resistance. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 558-565.	0.8	18

#	Article	IF	CITATIONS
217	Nanoscale Heterogeneities of Non-Noble Iron-Based Metallic Glasses toward Efficient Water Oxidation at Industrial-Level Current Densities. ACS Applied Materials & Interfaces, 2022, 14, 10288-10297.	4.0	18
218	Determination of forming ability of high pressure die casting for Zr-based metallic glass. Journal of Materials Processing Technology, 2017, 244, 87-96.	3.1	17
219	Microstructure, mechanical and wear properties of core–shell structural particle reinforced Ti-O alloys. Vacuum, 2017, 139, 44-50.	1.6	17
220	Aluminum and antimony segregation on a batch hot-dip galvanized Zn-0.05Al-0.2Sb coating. Journal of Alloys and Compounds, 2017, 694, 1004-1010.	2.8	17
221	Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR) Conductors in High-Voltage Transmission Line. Metals, 2017, 7, 373.	1.0	17
222	Microstructure and mechanical properties of a high-oxygen core-shell network structured Ti6Al4V alloy. Vacuum, 2018, 149, 140-145.	1.6	17
223	Low-valence ion addition induced more compact passive films on nickel-copper nano-coatings. Journal of Materials Science and Technology, 2019, 35, 2144-2155.	5.6	17
224	Evolution of grain boundary and texture in TC11 titanium alloy under electroshock treatment. Journal of Alloys and Compounds, 2022, 904, 163969.	2.8	17
225	Elastic moduli of sintered powders with application to components fabricated using selective laser melting. Acta Materialia, 2011, 59, 5257-5265.	3.8	16
226	Elevated tensile properties of Ti-O alloy with a novel core-shell structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 360-365.	2.6	16
227	Homogenization and Growth Behavior of Second-Phase Particles in a Deformed Zr–Sn–Nb–Fe–Cu–Si–O Alloy. Metals, 2018, 8, 759.	1.0	16
228	Tensile and superelastic behaviors of Ti-35Nb-2Ta-3Zr with gradient structure. Materials and Design, 2020, 194, 108961.	3.3	16
229	Thermal stability of mechanically alloyed boride/Ti50Cu18Ni22Al4Sn6 glassy alloy composites. Journal of Non-Crystalline Solids, 2005, 351, 2277-2286.	1.5	15
230	In situ high-energy x-ray diffraction observation of structural evolution in a Ti-based bulk metallic glass upon heating. Journal of Materials Research, 2010, 25, 2271-2277.	1.2	15
231	Ultrafast consolidation of bulk nanocrystalline titanium alloy through ultrasonic vibration. Scientific Reports, 2018, 8, 801.	1.6	15
232	Pitting and etching behaviors occurring in duplex stainless steel 2205 in the presence of alternating voltage interference. Construction and Building Materials, 2019, 202, 877-890.	3.2	15
233	Tailoring grain morphology in Ti-6Al-3Mo through heterogeneous nucleation in directed energy deposition. Journal of Materials Science and Technology, 2021, 88, 132-142.	5.6	15
234	Role of maze like structure and Y2O3 on Al-based amorphous ribbon surface in MO solution degradation. Journal of Molecular Liquids, 2020, 318, 114318.	2.3	15

#	Article	IF	CITATIONS
235	Bulk TiB2-Based Ceramic Composites with Improved Mechanical Property Using Fe–Ni–Ti–Al as a Sintering Aid. Materials, 2014, 7, 7105-7117.	1.3	14
236	Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test. Journal of Materials Engineering and Performance, 2015, 24, 1441-1451.	1.2	14
237	High Activity Methanol/H ₂ O ₂ Catalyst of Nanoporous Gold from Al–Au Ribbon Precursors with Various Circumferential Speeds. Journal of Physical Chemistry C, 2016, 120, 25296-25305.	1.5	14
238	α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1986-1991.	1.1	14
239	Discontinuous core-shell structured Ti-25Nb-3Mo-3Zr-2Sn alloy with high strength and good plasticity. Materials Characterization, 2019, 147, 127-130.	1.9	14
240	Non-layer-wise fracture and deformation mechanism in beta titanium cubic lattice structure manufactured by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141696.	2.6	14
241	Refinement of TiB reinforcements in TiB/Ti-2Al-6Sn titanium matrix composite via electroshock treatment. Materials Characterization, 2021, 180, 111395.	1.9	14
242	Deformation-induced grain refinement in body-centered cubic Co–Fe alloys upon room temperature compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5796-5800.	2.6	13
243	Architectural design of diamond-like carbon coatings for long-lasting joint replacements. Materials Science and Engineering C, 2013, 33, 2788-2794.	3.8	13
244	Effects of mechanical compression and autoclave treatment on the backbone clusters in the Al86Ni9La5 amorphous alloy. Journal of Alloys and Compounds, 2014, 587, 59-65.	2.8	13
245	Photocatalytic Degradation of the Azo Dye Acid Red 14 in Nanosized TiO ₂ Suspension under Simulated Solar Light. Clean - Soil, Air, Water, 2015, 43, 1037-1043.	0.7	13
246	Ultrafine processing of (TiB+TiC)/TC18 composites processed by ECAP via Bc route. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 99-108.	2.6	13
247	Fe-Based Metallic Glasses and Dyes in Fenton-Like Processes: Understanding Their Intrinsic Correlation. Catalysts, 2020, 10, 48.	1.6	13
248	MgZn-based amorphous ribbon as a benign decolorizer in methyl blue solution. Journal of Non-Crystalline Solids, 2020, 529, 119802.	1.5	13
249	Tailoring deformation and superelastic behaviors of beta-type Ti-Nb-Mn-Sn alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103867.	1.5	13
250	Unique corrosion behavior of Fe78Si9B13 glassy alloy with different circumferential speeds under various chloride ion levels. Journal of Alloys and Compounds, 2014, 593, 16-23.	2.8	12
251	A strategy to introduce gradient equiaxed grains into Zr sheet by combining laser surface treatment, rolling and annealing. Scripta Materialia, 2021, 196, 113761.	2.6	12
252	Formation of glassy Ti50Cu20Ni24Si4B2 alloy by high-energy ball milling. Materials Letters, 2002, 56, 615-619.	1.3	11

#	Article	IF	CITATIONS
253	Morphology and interfacial structure of gamma precipitates in the beta phase of a Ti-Al-Nb-Zr alloy. Journal of Materials Science, 2006, 41, 611-619.	1.7	11
254	A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions. PLoS ONE, 2016, 11, e0146421.	1.1	11
255	The interaction between encapsulated Gd2O3 particles and polymeric matrix: The mechanism of fracture and X-ray attenuation properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535, 175-183.	2.3	11
256	Micromorphology and Phase Composition Manipulation of Nanoporous Gold with High Methanol Electro-oxidation Catalytic Activity through Adding a Magnetic Field in the Dealloying Process. Journal of Physical Chemistry C, 2018, 122, 3371-3385.	1.5	11
257	High temperature deformation and microstructural evolution of core-shell structured titanium alloy. Journal of Alloys and Compounds, 2019, 775, 316-321.	2.8	11
258	High MB Solution Degradation Efficiency of FeSiBZr Amorphous Ribbon with Surface Tunnels. Materials, 2020, 13, 3694.	1.3	11
259	Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses. Journal of Materials Science and Technology, 2021, 70, 205-213.	5.6	11
260	Compressive properties and microstructure evolution in NiTiNb alloy with mesh eutectic phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140434.	2.6	11
261	{332}<113> Twinning transfer behavior and its effect on the twin shape in a beta-type Ti-23.1Nb-2.0Zr-1.0O alloy. Journal of Materials Science and Technology, 2021, 91, 58-66.	5.6	11
262	High-content continuous carbon fibers reinforced PEEK matrix composite with ultra-high mechanical and wear performance at elevated temperature. Composite Structures, 2022, 295, 115837.	3.1	11
263	Deformation-induced nanoscale high-temperature phase separation in Co–Fe alloys at room temperature. Applied Physics Letters, 2007, 90, 201908.	1.5	10
264	Boride precipitation and mechanical behaviour of high boron stainless steel with boron and titanium additions. International Journal of Materials and Product Technology, 2015, 51, 332.	0.1	10
265	Alternating voltage induced oscillation on electrochemical behavior and pitting corrosion in duplex stainless steel 2205. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 419-433.	0.8	10
266	Effect of direct current electric field intensity and electrolyte layer thickness on oxygen reduction in simulated atmospheric environment. Corrosion Science, 2019, 148, 206-212.	3.0	10
267	Deformation and toughness behavior of β -type titanium alloys comprising C15-type Laves phase. Materials Today Sustainability, 2020, 9, 100034.	1.9	10
268	Bulk multimodal-grained irons with large plasticity fabricated by spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 591, 54-58.	2.6	9
269	A Novel Creep-Fatigue Life Prediction Model for P92 Steel on the Basis of Cyclic Strain Energy Density. Journal of Materials Engineering and Performance, 2016, 25, 4868-4874.	1.2	9
270	A novel approach for the preparation of nanosized Gd2O3 structure: The influence of surface force on the morphology of ball milled particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 13-19.	2.3	9

#	Article	IF	CITATIONS
271	Corrosion behavior of monophasic and multiphasic Al50Au50 ribbons in AlCl3 + HCl solution. Corrosion Science, 2020, 165, 108398.	3.0	9
272	Atomically thin heavy-metal-free ZnTe nanoplatelets formed from magic-size nanoclusters. Nanoscale Advances, 2020, 2, 3316-3322.	2.2	9
273	High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases. Advances in Materials Research (South Korea), 2012, 1, 13-29.	0.6	9
274	Effect of high pressure during the fabrication on the thermal and mechanical properties of amorphous Ni60Nb40 particle-reinforced Al-based metal matrix composites. Journal of Materials Research, 2007, 22, 1168-1173.	1.2	8
275	CO2 mineralization using basic oxygen furnace slag: process optimization by response surface methodology. Environmental Earth Sciences, 2016, 75, 1.	1.3	8
276	Effect of ceramic types on the microstructure and corrosion behavior of titanium matrix composites produced by selective laser melting. Journal of Alloys and Compounds, 2022, 918, 165704.	2.8	8
277	Effect of upset forging on microstructure and tensile properties in a devitrified Al–Ni–Co–Y Alloy. Journal of Materials Science, 2013, 48, 3841-3851.	1.7	7
278	Solidification Effect on the Microstructure and Mechanism of Laser‣olidâ€Formingâ€Produced Flameâ€Resistant Ti–35V–15Cr Alloy. Advanced Engineering Materials, 2020, 22, 2000102.	1.6	7
279	Nb-60Ta-2Zr alloy exposed to simulated physiological medium: Metallic-ion release behaviour and its correlation with electrochemical properties. Corrosion Science, 2022, 196, 110034.	3.0	7
280	Complete suppression of metastable phase and significant enhancement of magnetic properties of B-rich PrFeB nanocomposites prepared by devitrifying amorphous ribbons. Journal of Magnetism and Magnetic Materials, 2007, 308, 24-27.	1.0	6
281	Mechanical property and microstructure evolution of nitrogen-modified Ti-6Al-4V alloy with corre-shell structure by hot compression. Materials Characterization, 2018, 142, 270-275.	1.9	6
282	Recrystallization Behavior and Super-Elasticity of a Metastable β-Type Ti-21Nb-7Mo-4Sn Alloy During Cold Rolling and Annealing. Journal of Materials Engineering and Performance, 2018, 27, 4100-4106.	1.2	6
283	Water Splitting: A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution (Adv. Mater. 21/2020). Advanced Materials, 2020, 32, 2070166.	11.1	6
284	High-strength ultrafine-grained Ti-Fe-Sn alloys with a bimodal structure. Journal of Physics: Conference Series, 2010, 240, 012103.	0.3	5
285	Effect of Thermomechanical Processing on the Microstructure and Retained Austenite Stability during In Situ Tensile Testing Using Synchrotron X-Ray Diffraction of NbMoAl TRIP Steel. Solid State Phenomena, 0, 172-174, 741-746.	0.3	5
286	Constant-stress accelerated life test of white organic light-emitting diode based on least square method under Weibull distribution. Journal of Information Display, 2014, 15, 71-75.	2.1	5
287	Additive Manufacturing of Titanium Alloys. , 2022, , 256-274.		5
288	Deformation behavior and plastic instability of off-stoichiometric Co–Fe alloys. Scripta Materialia, 2007, 57, 731-734.	2.6	4

#	Article	IF	CITATIONS
289	Facile preparation of rare-earth semiconductor nanocrystals and tuning of their dimensionalities. RSC Advances, 2015, 5, 86885-86890.	1.7	4
290	Significantly Improved Corrosion Properties of Ultrafine-Grained Pure Mg Processed by Sliding Friction Treatment. Jom, 2018, 70, 2596-2602.	0.9	4
291	Improved wear resistance and mechanism of titanium aluminum based alloys reinforced by solid lubricant materials. Materials Research Express, 2018, 5, 086502.	0.8	4
292	Fast Activating Persulfate by Crystallization of Fe-Based Metallic Glasses with External Energy. Materials Science Forum, 0, 960, 200-206.	0.3	4
293	Tailoring Grain Boundary and Resultant Plasticity of Pure Iron by Pulsed-Electric-Current Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 856-862.	1.1	4
294	Damage behavior and mechanism of SiCp/Al composites under biaxial tension. Materials Characterization, 2021, 180, 111402.	1.9	4
295	A New Method for Evaluating the Bond Strength of Plasma-Sprayed NiCrBSi Coatings. Metals, 2022, 12, 168.	1.0	4
296	Accommodation of angular incompatibilities between interfacial facets during precipitate growth. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 901-909.	1.1	3
297	Ultrahigh strength and large plasticity of nanostructured Ti 62 Nb 12.2 Fe 13.6 Co 6.4 Al 5.8 alloy obtained by selectively controlled micrometer-sized phases. Materials Characterization, 2017, 124, 260-265.	1.9	3
298	Heat-Activated Persulfate by Fe-Based Metallic Glass: A Comparative Study of Two Dyes. Materials Science Forum, 0, 921, 13-20.	0.3	3
299	Influence of Direct Current Electric Field on Electrode Process of Carbon Steel under Thin Electrolyte Layers. Journal of the Electrochemical Society, 2018, 165, C385-C394.	1.3	3
300	Additive Manufacturing of Titanium Alloys for Biomedical Applications. , 2019, , 179-196.		3
301	Correlation between microstructure and deformation mechanism in Ti66Nb13Cu8Ni6.8Al6.2 composites at ambient and elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138448.	2.6	3
302	Microstructure and Mechanical Properties of Zamak 3 Alloy Subjected to Sliding Friction Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5888-5895.	1.1	3
303	Catalytic activity of extruded and annealed Au–Ag alloys for the electro-oxidation of CH3OH and HCOOH. Journal of Alloys and Compounds, 2020, 815, 152409.	2.8	3
304	Differences in electrochemical corrosion behaviours between selective laser melted and wrought Ti6Al4V alloys in acid fluoride-containing artificial saliva. Journal of Applied Electrochemistry, 2021, 51, 1619-1633.	1.5	3
305	Dealloyed porous gold anchored by in situ generated graphene sheets as high activity catalyst for methanol electro-oxidation reaction. RSC Advances, 2020, 10, 1666-1678.	1.7	3
306	Vacancy-Type Defects Study on Ultra-Fine Grained Aluminium Processed by Severe Plastic Deformation. Science of Advanced Materials, 2014, 6, 1338-1345.	0.1	3

#	Article	IF	CITATIONS
307	Studies on pitting corrosion in austenitic stainless steel interfered by squareâ€wave alternating voltage with different parameters using multiâ€potential steps method. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1741-1757.	0.8	2
308	Editorial: Structure and Mechanical Properties of Titanium Alloys and Titanium Matrix Composites (TMCs). Frontiers in Materials, 2020, 7, .	1.2	2
309	Induction and pore-formed stages in Al2Au's dealloying process in HCl solutions. Corrosion Science, 2021, 181, 109220.	3.0	2
310	Evolution of microstructural complex transitions in low-modulus β-type Ti-35Nb-2Ta-3Zr alloy manufactured by laser powder bed fusion. Additive Manufacturing, 2021, 48, 102376.	1.7	2
311	Enhanced Amorphization by Sn Substitution for Si and B in the Ball-Milled Ti ₅₀ Ni ₂₂ Cu ₁₈ Al ₄ Si ₄ B ₂ Alloy. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 488-493.	0.1	1
312	Rapid Decolorization and Mineralization of Congo Red Using Fe78Si9B13Amorphous Alloy by Photo Fenton-Like Process. , 2017, , 765-776.		1
313	Metallic Glasses: Compelling Rejuvenated Catalytic Performance in Metallic Glasses (Adv. Mater.) Tj ETQq1 1 0.7	84314 rgB 11.1	T <u>/</u> Overlock
314	Corrosion Behaviors of Additive Manufactured Titanium Alloys. , 2019, , 197-226.		1
315	Metallic Glass Catalysts: Attractive In Situ Selfâ€Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance (Adv. Funct.) Tj ETQq1 1 0.7	84 31 84 rgB	T / D verlock
316	Corrosion of Titanium Alloys and Composites in Aqueous Solutions. , 2022, , 200-211.		1
317	Mechanically Alloyed Boride/Ti ₅₀ Cu ₁₈ Ni ₂₂ Al ₄ Sn ₆ Glassy Alloy Composites with a Wide Supercooled Liquid Region. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 141-144.	0.1	0
318	Accommodation of angular incompatibilities between interfacial facets during precipitate growth. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 901-909.	1.1	0
319	Investigation of Anti-Alga Properties and Anti-Bacteria Effects of Composite Nanofiltration Membranes Based on Chitosan Derivatives. International Journal of Environmental Science and Development, 2015, 6, 174-177.	0.2	Ο
320	Photocatalysis: Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis (Adv. Mater. 39/2018). Advanced Materials, 2018, 30, 1870296.	11.1	0
321	Finite Element Dynamic Analysis on Residual Stress Distribution of Titanium Alloy and Titanium Matrix Composite after Shot Peening Treatment. , 0, , .		0
322	Nanotwinned Cu and In-Situ Fe ₂ p Reinforced Bulk Cu-Fe Immiscible Alloy by Selective Laser Melting: Enhanced Strength and Plasticity. SSRN Electronic Journal, 2019, , .	0.4	0
323	A Selfâ€6upported Highâ€Entropy Metallic Glass with a Nanosponge Architecture for Efficient Hydrogen Evolution under Alkaline and Acidic Conditions (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170283.	7.8	0
324	Effects of Alloying Elements on the Microstructure and Mechanical Properties of Novel α+β Dual-Phase Ti-Nb-Ta-Zr Alloys. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
325	Accommodation of angular incompatibilities between interfacial facets during precipitate growth. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 901-909.	1.1	0