## Manuel N Melo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/749726/publications.pdf Version: 2024-02-01



MANUEL N MELO

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Two decades of Martini: Better beads, broader scope. Wiley Interdisciplinary Reviews: Computational<br>Molecular Science, 2023, 13, .                                                                                | 6.2 | 58        |
| 2  | Coarse-Grain Simulations of Membrane-Adsorbed Helical Peptides. Methods in Molecular Biology, 2022, 2405, 137-150.                                                                                                   | 0.4 | 0         |
| 3  | Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain<br>Force Field. Journal of Chemical Theory and Computation, 2022, 18, 357-373.                                    | 2.3 | 24        |
| 4  | Parainfluenza Fusion Peptide Promotes Membrane Fusion by Assembling into Oligomeric Porelike<br>Structures. ACS Chemical Biology, 2022, 17, 1831-1843.                                                               | 1.6 | 3         |
| 5  | Overlapping Properties of the Short Membrane-Active Peptide BP100 With (i) Polycationic TAT and (ii)<br>α-helical Magainin Family Peptides. Frontiers in Cellular and Infection Microbiology, 2021, 11, 609542.      | 1.8 | 9         |
| 6  | Coarse-Grained Parameterization of Nucleotide Cofactors and Metabolites: Protonation Constants,<br>Partition Coefficients, and Model Topologies. Journal of Chemical Information and Modeling, 2021, 61,<br>335-346. | 2.5 | 9         |
| 7  | Acyl-chain saturation regulates the order of phosphatidylinositol 4,5-bisphosphate nanodomains.<br>Communications Chemistry, 2021, 4, .                                                                              | 2.0 | 4         |
| 8  | Localization Preference of Antimicrobial Peptides on Liquid-Disordered Membrane Domains. Frontiers<br>in Cell and Developmental Biology, 2020, 8, 350.                                                               | 1.8 | 25        |
| 9  | Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5861-5872.                         | 3.3 | 35        |
| 10 | Pitfalls of the Martini Model. Journal of Chemical Theory and Computation, 2019, 15, 5448-5460.                                                                                                                      | 2.3 | 159       |
| 11 | Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nature Communications, 2019, 10, 1832.                                                                                                                      | 5.8 | 144       |
| 12 | Self-assembly Stability Compromises the Efficacy of Tryptophan-Containing Designed Anti-measles<br>Virus Peptides. , 2019, 10, .                                                                                     |     | 2         |
| 13 | The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1292-1300.                             | 1.4 | 28        |
| 14 | Structure–Stability–Function Mechanistic Links in the Anti-Measles Virus Action of<br>Tocopherol-Derivatized Peptide Nanoparticles. ACS Nano, 2018, 12, 9855-9865.                                                   | 7.3 | 13        |
| 15 | Lipid–Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS Central Science, 2018,<br>4, 709-717.                                                                                                  | 5.3 | 274       |
| 16 | High-Throughput Simulations Reveal Membrane-Mediated Effects of Alcohols on MscL Gating. Journal of the American Chemical Society, 2017, 139, 2664-2671.                                                             | 6.6 | 41        |
| 17 | Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nature Communications, 2017, 8, 15214.                                                                                            | 5.8 | 71        |
| 18 | Prediction of Thylakoid Lipid Binding Sites on Photosystem II. Biophysical Journal, 2017, 113, 2669-2681.                                                                                                            | 0.2 | 37        |

MANUEL N MELO

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Extending the Adress Multiscale Scheme for Protein and Bilayer Applications. Biophysical Journal, 2016, 110, 643a-644a.                                                                       | 0.2 | 0         |
| 20 | Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Human Molecular Genetics, 2016, 25, ddw130.                   | 1.4 | 9         |
| 21 | Computational Lipidomics and the Lipid Organization of Cell Envelopes. Biophysical Journal, 2015, 108, 342a.                                                                                  | 0.2 | Ο         |
| 22 | Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. Journal of Chemical Physics, 2015, 142, 244118.                                                     | 1.2 | 39        |
| 23 | Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy.<br>Neuron, 2015, 88, 735-748.                                                                     | 3.8 | 140       |
| 24 | Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent.<br>Journal of Chemical Theory and Computation, 2015, 11, 260-275.                             | 2.3 | 236       |
| 25 | Adaptive resolution simulation of an atomistic protein in MARTINI water. Journal of Chemical Physics, 2014, 140, 054114.                                                                      | 1.2 | 74        |
| 26 | Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society, 2014, 136, 14554-14559.                                                                                  | 6.6 | 734       |
| 27 | Adaptive Resolution Simulation of MARTINI Solvents. Journal of Chemical Theory and Computation, 2014, 10, 2591-2598.                                                                          | 2.3 | 46        |
| 28 | The Mechanisms and Quantification of the Selective Permeability in Transport Across Biological<br>Barriers: the Example of Kyotorphin. Mini-Reviews in Medicinal Chemistry, 2014, 14, 99-110. | 1.1 | 5         |
| 29 | Defined lipid analogues induce transient channels to facilitate drug-membrane traversal and circumvent cancer therapy resistance. Scientific Reports, 2013, 3, 1949.                          | 1.6 | 22        |
| 30 | Bacteriocin AS-48 binding to model membranes and pore formation as revealed by coarse-grained simulations. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2524-2531.               | 1.4 | 37        |
| 31 | The Mechanism of Action of Antimicrobial Peptides: Lipid Vesicles vs. Bacteria. Frontiers in<br>Immunology, 2012, 3, 236.                                                                     | 2.2 | 38        |
| 32 | Relating Molecular-Level Events with Bacterial Killing by Antimicrobial Peptides. Biophysical Journal,<br>2012, 102, 91a.                                                                     | 0.2 | 0         |
| 33 | Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides. PLoS<br>ONE, 2011, 6, e28549.                                                                 | 1.1 | 45        |
| 34 | Using zeta-potential measurements to quantify peptide partition to lipid membranes. European<br>Biophysics Journal, 2011, 40, 481-487.                                                        | 1.2 | 64        |
| 35 | Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR. Journal of Biological Chemistry, 2010, 285, 27536-27544.                          | 1.6 | 193       |
| 36 | Drug–lipid interaction evaluation: why a 19th century solution?. Trends in Pharmacological Sciences, 2010, 31, 449-454.                                                                       | 4.0 | 31        |

MANUEL N MELO

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nature<br>Reviews Microbiology, 2009, 7, 245-250.                                                              | 13.6 | 568       |
| 38 | Interaction of the Dengue Virus Fusion Peptide with Membranes Assessed by NMR: The Essential Role of<br>the Envelope Protein Trp101 for Membrane Fusion. Journal of Molecular Biology, 2009, 392, 736-746. | 2.0  | 45        |
| 39 | Synergistic Effects of the Membrane Actions of Cecropin-Melittin Antimicrobial Hybrid Peptide BP100.<br>Biophysical Journal, 2009, 96, 1815-1827.                                                          | 0.2  | 83        |
| 40 | Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering.<br>Molecular Membrane Biology, 2008, 25, 128-138.                                                        | 2.0  | 30        |
| 41 | Characterization of glycoinositolphosphoryl ceramide structure mutant strains of Cryptococcus neoformans. Glycobiology, 2007, 17, 1C-1C.                                                                   | 1.3  | 36        |
| 42 | Omiganan interaction with bacterial membranes and cell wall models. Assigning a biological role to saturation. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1277-1290.                        | 1.4  | 56        |
| 43 | How to address CPP and AMP translocation? Methods to detect and quantify peptide internalizationin vitroandin vivo(Review). Molecular Membrane Biology, 2007, 24, 173-184.                                 | 2.0  | 34        |
| 44 | Omiganan Pentahydrochloride in the Front Line of Clinical Applications of Antimicrobial Peptides.<br>Recent Patents on Anti-infective Drug Discovery, 2006, 1, 201-207.                                    | 0.5  | 59        |
| 45 | Cell-penetrating peptides and antimicrobial peptides: how different are they?. Biochemical Journal, 2006, 399, 1-7.                                                                                        | 1.7  | 367       |