Manuel N Melo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/749726/publications.pdf

Version: 2024-02-01

45 papers 3,927 citations

28 h-index 289141 40 g-index

52 all docs 52 docs citations

52 times ranked 6047 citing authors

#	Article	IF	CITATIONS
1	Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society, 2014, 136, 14554-14559.	6.6	734
2	Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nature Reviews Microbiology, 2009, 7, 245-250.	13.6	568
3	Cell-penetrating peptides and antimicrobial peptides: how different are they?. Biochemical Journal, 2006, 399, 1-7.	1.7	367
4	Lipid–Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS Central Science, 2018, 4, 709-717.	5.3	274
5	Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent. Journal of Chemical Theory and Computation, 2015, 11, 260-275.	2.3	236
6	Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR. Journal of Biological Chemistry, 2010, 285, 27536-27544.	1.6	193
7	Pitfalls of the Martini Model. Journal of Chemical Theory and Computation, 2019, 15, 5448-5460.	2.3	159
8	Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nature Communications, 2019, 10, 1832.	5.8	144
9	Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy. Neuron, 2015, 88, 735-748.	3.8	140
10	Synergistic Effects of the Membrane Actions of Cecropin-Melittin Antimicrobial Hybrid Peptide BP100. Biophysical Journal, 2009, 96, 1815-1827.	0.2	83
11	Adaptive resolution simulation of an atomistic protein in MARTINI water. Journal of Chemical Physics, 2014, 140, 054114.	1.2	74
12	Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nature Communications, 2017, 8, 15214.	5.8	71
13	Using zeta-potential measurements to quantify peptide partition to lipid membranes. European Biophysics Journal, 2011, 40, 481-487.	1.2	64
14	Omiganan Pentahydrochloride in the Front Line of Clinical Applications of Antimicrobial Peptides. Recent Patents on Anti-infective Drug Discovery, 2006, 1, 201-207.	0.5	59
15	Two decades of Martini: Better beads, broader scope. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	58
16	Omiganan interaction with bacterial membranes and cell wall models. Assigning a biological role to saturation. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1277-1290.	1.4	56
17	Adaptive Resolution Simulation of MARTINI Solvents. Journal of Chemical Theory and Computation, 2014, 10, 2591-2598.	2.3	46
18	Interaction of the Dengue Virus Fusion Peptide with Membranes Assessed by NMR: The Essential Role of the Envelope Protein Trp101 for Membrane Fusion. Journal of Molecular Biology, 2009, 392, 736-746.	2.0	45

#	Article	IF	CITATIONS
19	Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides. PLoS ONE, 2011, 6, e28549.	1.1	45
20	High-Throughput Simulations Reveal Membrane-Mediated Effects of Alcohols on MscL Gating. Journal of the American Chemical Society, 2017, 139, 2664-2671.	6.6	41
21	Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. Journal of Chemical Physics, 2015, 142, 244118.	1.2	39
22	The Mechanism of Action of Antimicrobial Peptides: Lipid Vesicles vs. Bacteria. Frontiers in Immunology, 2012, 3, 236.	2.2	38
23	Bacteriocin AS-48 binding to model membranes and pore formation as revealed by coarse-grained simulations. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2524-2531.	1.4	37
24	Prediction of Thylakoid Lipid Binding Sites on Photosystem II. Biophysical Journal, 2017, 113, 2669-2681.	0.2	37
25	Characterization of glycoinositolphosphoryl ceramide structure mutant strains of Cryptococcus neoformans. Glycobiology, 2007, 17, 1C-1C.	1.3	36
26	Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5861-5872.	3.3	35
27	How to address CPP and AMP translocation? Methods to detect and quantify peptide internalizationin vitroandin vivo(Review). Molecular Membrane Biology, 2007, 24, 173-184.	2.0	34
28	Drug–lipid interaction evaluation: why a 19th century solution?. Trends in Pharmacological Sciences, 2010, 31, 449-454.	4.0	31
29	Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering. Molecular Membrane Biology, 2008, 25, 128-138.	2.0	30
30	The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1292-1300.	1.4	28
31	Localization Preference of Antimicrobial Peptides on Liquid-Disordered Membrane Domains. Frontiers in Cell and Developmental Biology, 2020, 8, 350.	1.8	25
32	Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field. Journal of Chemical Theory and Computation, 2022, 18, 357-373.	2.3	24
33	Defined lipid analogues induce transient channels to facilitate drug-membrane traversal and circumvent cancer therapy resistance. Scientific Reports, 2013, 3, 1949.	1.6	22
34	Structure–Stability–Function Mechanistic Links in the Anti-Measles Virus Action of Tocopherol-Derivatized Peptide Nanoparticles. ACS Nano, 2018, 12, 9855-9865.	7.3	13
35	Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Human Molecular Genetics, 2016, 25, ddw130.	1.4	9
36	Overlapping Properties of the Short Membrane-Active Peptide BP100 With (i) Polycationic TAT and (ii) α-helical Magainin Family Peptides. Frontiers in Cellular and Infection Microbiology, 2021, 11, 609542.	1.8	9

#	Article	IF	CITATIONS
37	Coarse-Grained Parameterization of Nucleotide Cofactors and Metabolites: Protonation Constants, Partition Coefficients, and Model Topologies. Journal of Chemical Information and Modeling, 2021, 61, 335-346.	2.5	9
38	The Mechanisms and Quantification of the Selective Permeability in Transport Across Biological Barriers: the Example of Kyotorphin. Mini-Reviews in Medicinal Chemistry, 2014, 14, 99-110.	1.1	5
39	Acyl-chain saturation regulates the order of phosphatidylinositol 4,5-bisphosphate nanodomains. Communications Chemistry, 2021, 4, .	2.0	4
40	Parainfluenza Fusion Peptide Promotes Membrane Fusion by Assembling into Oligomeric Porelike Structures. ACS Chemical Biology, 2022, 17, 1831-1843.	1.6	3
41	Self-assembly Stability Compromises the Efficacy of Tryptophan-Containing Designed Anti-measles Virus Peptides. , 2019, 10, .		2
42	Relating Molecular-Level Events with Bacterial Killing by Antimicrobial Peptides. Biophysical Journal, 2012, 102, 91a.	0.2	0
43	Computational Lipidomics and the Lipid Organization of Cell Envelopes. Biophysical Journal, 2015, 108, 342a.	0.2	0
44	Extending the Adress Multiscale Scheme for Protein and Bilayer Applications. Biophysical Journal, 2016, 110, 643a-644a.	0.2	0
45	Coarse-Grain Simulations of Membrane-Adsorbed Helical Peptides. Methods in Molecular Biology, 2022, 2405, 137-150.	0.4	0