Qing Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7496978/publications.pdf

Version: 2024-02-01

818 papers 37,817 citations

2538 96 h-index 7333 152 g-index

827 all docs

827 docs citations

times ranked

827

33711 citing authors

#	Article	IF	CITATIONS
1	Electrochemical Reduction of N ₂ under Ambient Conditions for Artificial N ₂ Fixation and Renewable Energy Storage Using N ₂ /NH ₃ Cycle. Advanced Materials, 2017, 29, 1604799.	11.1	969
2	Au Subâ€Nanoclusters on TiO ₂ toward Highly Efficient and Selective Electrocatalyst for N ₂ Conversion to NH ₃ at Ambient Conditions. Advanced Materials, 2017, 29, 1606550.	11.1	785
3	Amorphizing of Au Nanoparticles by CeO <i>_x</i> ê€"RGO Hybrid Support towards Highly Efficient Electrocatalyst for N ₂ Reduction under Ambient Conditions. Advanced Materials, 2017, 29, 1700001.	11.1	518
4	Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L Nature Genetics, 2018, 50, 1565-1573.	9.4	463
5	Anchoring PdCu Amorphous Nanocluster on Graphene for Electrochemical Reduction of N ₂ to NH ₃ under Ambient Conditions in Aqueous Solution. Advanced Energy Materials, 2018, 8, 1800124.	10.2	454
6	Lamella-nanostructured eutectic zincâ \in aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nature Communications, 2020, 11, 1634.	5 . 8	426
7	Enhancement of CO detection in Al doped graphene. Chemical Physics Letters, 2008, 461, 276-279.	1.2	415
8	Noble-metal-free cobalt phosphide modified carbon nitride: An efficient photocatalyst for hydrogen generation. Applied Catalysis B: Environmental, 2017, 200, 477-483.	10.8	364
9	CO Catalytic Oxidation on Copper-Embedded Graphene. Journal of Physical Chemistry C, 2011, 115, 3678-3683.	1.5	337
10	An Efficient CoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature. Angewandte Chemie - International Edition, 2013, 52, 4406-4409.	7.2	337
11	Size dependent interface energy and its applications. Surface Science Reports, 2008, 63, 427-464.	3.8	308
12	Formation Mechanism of \hat{l}^2 -Phase in PVDF/CNT Composite Prepared by the Sonication Method. Macromolecules, 2009, 42, 8870-8874.	2.2	300
13	Fe ₃ Câ€Co Nanoparticles Encapsulated in a Hierarchical Structure of Nâ€Doped Carbon as a Multifunctional Electrocatalyst for ORR, OER, and HER. Advanced Functional Materials, 2019, 29, 1901949.	7.8	297
14	Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 2009, 475, 752-757.	2.8	281
15	Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chemical Engineering Journal, 2012, 181-182, 72-79.	6.6	276
16	Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nature Chemistry, 2019, 11, 64-70.	6.6	265
17	Melting thermodynamics of organic nanocrystals. Journal of Chemical Physics, 1999, 111, 2176-2180.	1.2	264
18	Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nature Communications, 2013, 4, 2169.	5 . 8	261

#	Article	IF	CITATIONS
19	Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. Journal of Materials Chemistry A, 2019, 7, 3492-3515.	5.2	252
20	Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO ₂ Reduction to Liquid Fuels with High Faradaic Efficiencies. Advanced Materials, 2018, 30, e1706194.	11.1	242
21	Lattice Contraction and Surface Stress of fcc Nanocrystals. Journal of Physical Chemistry B, 2001, 105, 6275-6277.	1.2	237
22	Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. Journal of Alloys and Compounds, 2010, 504, S515-S518.	2.8	228
23	Generating Defectâ€Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2019, 58, 9464-9469.	7.2	226
24	Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Physical Review B, 2002, 65, .	1.1	220
25	Highly Efficient Photoelectrochemical Water Splitting: Surface Modification of Cobaltâ€Phosphateâ€Loaded Co ₃ O ₄ /Fe ₂ O ₃ p–n Heterojunction Nanorod Arrays. Advanced Functional Materials, 2019, 29, 1801902.	7.8	220
26	Al doped graphene: A promising material for hydrogen storage at room temperature. Journal of Applied Physics, 2009, 105, .	1.1	212
27	Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction?. Small Methods, 2019, 3, 1800291.	4.6	210
28	N/O Dualâ€Doped Environmentâ€Friendly Hard Carbon as Advanced Anode for Potassiumâ€lon Batteries. Advanced Science, 2020, 7, 1902547.	5.6	208
29	AuPd–MnO _x /MOF–Graphene: An Efficient Catalyst for Hydrogen Production from Formic Acid at Room Temperature. Advanced Energy Materials, 2015, 5, 1500107.	10.2	203
30	High-Energy-Density Flexible Potassium-Ion Battery Based on Patterned Electrodes. Joule, 2018, 2, 736-746.	11.7	199
31	Enhanced Hydrogen Storage on Li-Dispersed Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 2028-2033.	1.5	196
32	Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Applied Surface Science, 2011, 257, 5083-5087.	3.1	196
33	Au@Pd core–shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid. Journal of Materials Chemistry A, 2013, 1, 12721.	5.2	196
34	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	16.0	195
35	Density functional theory calculations for two-dimensional silicene with halogen functionalization. Physical Chemistry Chemical Physics, 2012, 14, 257-261.	1.3	191
36	Modelling of surface energies of elemental crystals. Journal of Physics Condensed Matter, 2004, 16, 521-530.	0.7	190

#	Article	IF	CITATIONS
37	First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon, 2008, 46, 537-543.	5.4	189
38	High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 5413-5418.	2.2	187
39	Size-dependent cohesive energy of nanocrystals. Chemical Physics Letters, 2002, 366, 551-554.	1.2	178
40	Reconstructed Orthorhombic V2O5 Polyhedra for Fast Ion Diffusion in K-Ion Batteries. CheM, 2019, 5, 168-179.	5.8	174
41	Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate. Scientific Reports, 2012, 2, 598.	1.6	173
42	Size-dependent melting point of noble metals. Materials Chemistry and Physics, 2003, 82, 225-227.	2.0	172
43	Synthesis of Potassiumâ€Modified Graphitic Carbon Nitride with High Photocatalytic Activity for Hydrogen Evolution. ChemSusChem, 2014, 7, 2654-2658.	3. 6	166
44	Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Transactions, 2012, 41, 4544.	1.6	165
45	Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. Journal Physics D: Applied Physics, 2007, 40, 320-325.	1.3	164
46	Recent Advances toward the Rational Design of Efficient Bifunctional Air Electrodes for Rechargeable Zn–Air Batteries. Small, 2018, 14, e1703843.	5.2	163
47	Anchoring and Upgrading Ultrafine NiPd on Roomâ€Temperatureâ€Synthesized Bifunctional NH ₂ â€Nâ€rGO toward Lowâ€Cost and Highly Efficient Catalysts for Selective Formic Acid Dehydrogenation. Advanced Materials, 2018, 30, e1703038.	11.1	156
48	Modelling for size-dependent and dimension-dependent melting of nanocrystals. Journal Physics D: Applied Physics, 2000, 33, 2653-2656.	1.3	154
49	Size-Dependent Surface Energies of Nanocrystals. Journal of Physical Chemistry B, 2004, 108, 5617-5619.	1.2	151
50	Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nature Communications, 2020, 11, 2940.	5.8	146
51	Nanoporous Surface Highâ€Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009613.	7.8	145
52	Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.	15.6	141
53	Design of Dual-Modified MoS ₂ with Nanoporous Ni and Graphene as Efficient Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 8107-8114.	5 . 5	140
54	Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates. Nature Communications, 2020, 11, 1196.	5.8	140

#	Article	IF	Citations
55	Growth of zinc phosphate coatings on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 201, 1814-1820.	2.2	139
56	Modeling of the Melting Point, Debye Temperature, Thermal Expansion Coefficient, and the Specific Heat of Nanostructured Materials. Journal of Physical Chemistry C, 2009, 113, 16896-16900.	1.5	139
57	Rapid and energy-efficient synthesis of a graphene–CuCo hybrid as a high performance catalyst. Journal of Materials Chemistry, 2012, 22, 10990.	6.7	136
58	Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Communications, 2006, 139, 148-152.	0.9	135
59	Non-noble metals applied to solar water splitting. Energy and Environmental Science, 2018, 11, 3128-3156.	15.6	134
60	Grain size-dependent diffusion activation energy in nanomaterials. Solid State Communications, 2004, 130, 581-584.	0.9	132
61	Decorating Waste Cloth via Industrial Wastewater for Tubeâ€Type Flexible and Wearable Sodiumâ€lon Batteries. Advanced Materials, 2017, 29, 1603719.	11.1	131
62	Surface Tension and Its Temperature Coefficient for Liquid Metals. Journal of Physical Chemistry B, 2005, 109, 15463-15468.	1.2	130
63	Enhancing photocatalytic activity of disorder-engineered C/TiO ₂ and TiO ₂ nanoparticles. Journal of Materials Chemistry A, 2014, 2, 7439-7445.	5.2	130
64	Boosting Production of HCOOH from CO ₂ Electroreduction via Bi/CeO _{<i>x</i>} . Angewandte Chemie - International Edition, 2021, 60, 8798-8802.	7.2	130
65	Mesostructured Intermetallic Compounds of Platinum and Nonâ€Transition Metals for Enhanced Electrocatalysis of Oxygen Reduction Reaction. Advanced Functional Materials, 2015, 25, 230-237.	7.8	127
66	Microstructure and the properties of FeCoCuNiSnx high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 548, 64-68.	2.6	126
67	Tunable band gaps in silicene–MoS ₂ heterobilayers. Physical Chemistry Chemical Physics, 2014, 16, 11673-11678.	1.3	123
68	Ag0.1-Pd0.9/rGO: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Journal of Materials Chemistry A, 2013, 1, 12188.	5.2	121
69	Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst. International Journal of Hydrogen Energy, 2014, 39, 4850-4856.	3.8	121
70	Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Materials, 2020, 24, 439-449.	9.5	121
71	Effect of a Rippling Mode on Resonances of Carbon Nanotubes. Physical Review Letters, 2001, 86, 4843-4846.	2.9	120
72	Size-Dependent Surface Tension and Tolman's Length of Droplets. Langmuir, 2005, 21, 779-781.	1.6	118

#	Article	IF	CITATIONS
73	Structure and photocatalytic property of Mo-doped TiO2 nanoparticles. Powder Technology, 2013, 244, 9-15.	2.1	118
74	Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 251, 305-312.	10.8	118
75	Size-dependent interface energy and related interface stress. Acta Materialia, 2001, 49, 3143-3147.	3.8	117
76	Hall–Petch relationship in nanometer size range. Journal of Alloys and Compounds, 2003, 361, 160-164.	2.8	117
77	Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature. Journal of Materials Chemistry A, 2013, 1, 14957.	5.2	116
78	Thermal stability of crystalline thin films. Thin Solid Films, 1998, 312, 357-361.	0.8	114
79	Flexible Co–Mo–N/Au Electrodes with a Hierarchical Nanoporous Architecture as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1907214.	11.1	114
80	Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scripta Materialia, 2006, 54, 579-584.	2.6	113
81	NiAl(110)â^•Cr(110)interface: A density functional theory study. Physical Review B, 2006, 73, .	1.1	112
82	Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni. Transactions of Nonferrous Metals Society of China, 2010, 20, 82-89.	1.7	112
83	Remarkable Improvements in Volumetric Energy and Power of 3D MnO ₂ Microsupercapacitors by Tuning Crystallographic Structures. Advanced Functional Materials, 2016, 26, 1830-1839.	7.8	112
84	Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. Journal Physics D: Applied Physics, 2007, 40, 7440-7446.	1.3	110
85	Carbon quantum dot sensitized integrated Fe ₂ O ₃ @g-C ₃ N ₄ core–shell nanoarray photoanode towards highly efficient water oxidation. Journal of Materials Chemistry A, 2018, 6, 9839-9845.	5.2	110
86	Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 5956-5962.	2.2	109
87	Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting. Materials Chemistry Frontiers, 2017, 1, 2155-2173.	3.2	109
88	Visible-light photocatalysis in nitrogen–carbon-doped TiO2 films obtained by heating TiO2 gel–film in an ionized N2 gas. Thin Solid Films, 2008, 516, 1736-1742.	0.8	108
89	Controlling phase transition for single-layer MTe ₂ (M = Mo and W): modulation of the potential barrier under strain. Physical Chemistry Chemical Physics, 2016, 18, 4086-4094.	1.3	105
90	Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Scientific Reports, 2014, 4, 3821.	1.6	104

#	Article	IF	Citations
91	Ag ₂ 0 modified g-C ₃ N ₄ for highly efficient photocatalytic hydrogen generation under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 15710-15714.	5.2	103
92	Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Materialia, 2005, 53, 3305-3311.	3.8	102
93	Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures. Physical Review B, 2006, 73, .	1.1	102
94	Optical and electrical properties of Sn-doped CdO thin films obtained by pulse laser deposition. Vacuum, 2011, 85, 861-865.	1.6	100
95	Facile synthesis of nitrogen-doped graphene supported AuPd–CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature. Nanoscale, 2014, 6, 3073.	2.8	99
96	Size Effect on the Phase Stability of Nanostructures. Current Nanoscience, 2008, 4, 179-200.	0.7	98
97	Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides. Nature Communications, 2018, 9, 1375.	5.8	98
98	B 2 structure of high-entropy alloys with addition of Al. Journal of Applied Physics, 2008, 104, .	1.1	96
99	Photocatalytic property of Fe doped anatase and rutile TiO2 nanocrystal particles prepared by sol–gel technique. Applied Surface Science, 2012, 263, 260-265.	3.1	95
100	Simultaneous Achieving of High Faradaic Efficiency and CO Partial Current Density for CO ₂ Reduction via Robust, Nobleâ€Metalâ€Free Zn Nanosheets with Favorable Adsorption Energy. Advanced Energy Materials, 2019, 9, 1900276.	10.2	95
101	A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Advanced Materials, 2019, 31, e1806781.	11.1	95
102	Free energy of crystal–liquid interface. Acta Materialia, 1999, 47, 2109-2112.	3.8	94
103	Electroless Ni-P/Ni-B duplex coatings for improving the hardness and the corrosion resistance of AZ91D magnesium alloy. Applied Surface Science, 2008, 254, 4949-4955.	3.1	94
104	Facile synthesis of AgAuPd/graphene with high performance for hydrogen generation from formic acid. Journal of Materials Chemistry A, 2015, 3, 14535-14538.	5.2	94
105	Electric field induced reversible switch in hydrogen storage based on single-layer and bilayer graphenes. Carbon, 2009, 47, 3452-3460.	5.4	93
106	Bandgap opening in silicene: Effect of substrates. Chemical Physics Letters, 2014, 592, 222-226.	1.2	93
107	Review of Carbon Materials for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2018, 3, 2245-2260.	0.7	92
108	Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil–Water Separation. ACS Applied Materials & Diterfaces, 2018, 10, 9841-9848.	4.0	92

#	Article	IF	CITATIONS
109	Structural and optical properties of ZnO thin films deposited on quartz glass by pulsed laser deposition. Applied Surface Science, 2006, 252, 8451-8455.	3.1	91
110	Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High apacity Lithium Storage. Advanced Functional Materials, 2017, 27, 1700447.	7.8	91
111	Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2913-2933.	5.2	91
112	Electroless Ni–P layer with a chromium-free pretreatment on AZ91D magnesium alloy. Surface and Coatings Technology, 2007, 201, 4594-4600.	2.2	90
113	One-step synthesis of Cu@FeNi core–shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2012, 37, 10229-10235.	3.8	90
114	Interface Engineering of Co/CoMoN/NF Heterostructures for Highâ€Performance Electrochemical Overall Water Splitting. Advanced Science, 2022, 9, e2105313.	5.6	90
115	Superheating of nanocrystals embedded in matrix. Chemical Physics Letters, 2000, 322, 549-552.	1.2	88
116	Melting temperatures of semiconductor nanocrystals in the mesoscopic size range. Semiconductor Science and Technology, 2001, 16, L33-L35.	1.0	88
117	Electroless Ni–Sn–P coating on AZ91D magnesium alloy and its corrosion resistance. Surface and Coatings Technology, 2008, 202, 2570-2576.	2.2	87
118	Study of the formation and growth of tannic acid based conversion coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2009, 204, 736-747.	2.2	87
119	DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation. Chemical Communications, 2014, 50, 2732.	2.2	87
120	Nitrogen/Boron Doping Position Dependence of the Electronic Properties of a Triangular Graphene. ACS Nano, 2010, 4, 7619-7629.	7. 3	86
121	Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries. IScience, 2018, 6, 151-198.	1.9	85
122	Visible-light photocatalytic activity of nitrogen-doped TiO2 thin film prepared by pulsed laser deposition. Applied Surface Science, 2008, 254, 4620-4625.	3.1	84
123	Adipose-Specific Knockout of <i>Seipin/Bscl2</i> Results in Progressive Lipodystrophy. Diabetes, 2014, 63, 2320-2331.	0.3	84
124	Tailoring Oxygen Vacancies of BiVO ₄ toward Highly Efficient Nobleâ€Metalâ€Free Electrocatalyst for Artificial N ₂ Fixation under Ambient Conditions. Small Methods, 2019, 3, 1800333.	4.6	84
125	Size-dependent continuous binary solution phase diagram. Nanotechnology, 2003, 14, 438-442.	1.3	83
126	Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Applied Physics Letters, 2006, 88, 143115.	1.5	83

#	Article	IF	Citations
127	Discovery of cobweb-like MoC ₆ and its application for nitrogen fixation. Journal of Materials Chemistry A, 2018, 6, 9623-9628.	5.2	83
128	Ceâ€Modified Ni(OH) ₂ Nanoflowers Supported on NiSe ₂ Octahedra Nanoparticles as Highâ€Efficient Oxygen Evolution Electrocatalyst. Advanced Energy Materials, 2021, 11, 2101266.	10.2	83
129	Nanotube size-dependent melting of single crystals in carbon nanotubes. Applied Physics A: Materials Science and Processing, 1997, 64, 627-629.	1.1	82
130	First-principles study of the surface energy and work function of III-V semiconductor compounds. Physical Review B, 2007, 75, .	1.1	82
131	A Mini Review on the Functional Biomaterials Based on Poly(lactic acid) Stereocomplex. Polymer Reviews, 2016, 56, 262-286.	5.3	81
132	Electroless deposition of Ni–W–P coating on AZ91D magnesium alloy. Applied Surface Science, 2007, 253, 5116-5121.	3.1	80
133	Optical and electrical properties of In-doped CdO thin films fabricated by pulse laser deposition. Applied Surface Science, 2010, 256, 2910-2914.	3.1	80
134	Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Materials & Design, 2013, 46, 675-679.	5.1	80
135	Ultrasound-Triggered Phase-Transition Cationic Nanodroplets for Enhanced Gene Delivery. ACS Applied Materials & Delivery. ACS Applied Material	4.0	80
136	Noble-metal-free NiFeMo nanocatalyst for hydrogen generation from the decomposition of hydrous hydrazine. Journal of Materials Chemistry A, 2015, 3, 121-124.	5.2	80
137	Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Communications, 2010, 150, 680-683.	0.9	79
138	Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity. Scientific Reports, 2016, 6, 20933.	1.6	79
139	Comparison of different models for melting point change of metallic nanocrystals. Journal of Materials Research, 2001, 16, 3304-3308.	1.2	78
140	Enhanced UV emission of Y-doped ZnO nanoparticles. Applied Surface Science, 2012, 258, 6735-6738.	3.1	76
141	N-Doped Carbon Nanonecklaces with Encapsulated Sb as a Sodium-Ion Battery Anode. Matter, 2019, 1, 720-733.	5.0	76
142	Photothermo-chemotherapy of cancer employing drug leakage-free gold nanoshells. Biomaterials, 2016, 78, 40-49.	5.7	75
143	Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting. Applied Catalysis B: Environmental, 2018, 231, 43-50.	10.8	75
144	Field emission properties of N-doped capped single-walled carbon nanotubes: A first-principles density-functional study. Journal of Chemical Physics, 2007, 126, 164702.	1.2	74

#	Article	IF	CITATIONS
145	A novel open architecture built by ultra-fine single-crystal Co ₂ (CO ₃)(OH) ₂ nanowires and reduced graphene oxide for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17171-17179.	5.2	74
146	Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance. Scientific Reports, 2015, 5, 16629.	1.6	73
147	Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations. Nanotechnology, 2007, 18, 165702.	1.3	72
148	A unique porous architecture built by ultrathin wrinkled NiCoO ₂ /rGO/NiCoO ₂ sandwich nanosheets for pseudocapacitance and Li ion storage. Journal of Materials Chemistry A, 2016, 4, 10304-10313.	5.2	72
149	Nanoporous Palladium–Silver Surface Alloys as Efficient and pH-Universal Catalysts for the Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 1379-1386.	8.8	72
150	Bandgap Opening of Bilayer Graphene by Dual Doping from Organic Molecule and Substrate. Journal of Physical Chemistry C, 2013, 117, 12873-12881.	1.5	71
151	Density functional theory study of oxygen reduction reaction on Pt/Pd ₃ Al(111) alloy electrocatalyst. Physical Chemistry Chemical Physics, 2016, 18, 14234-14243.	1.3	71
152	Efficient CO ₂ Reduction to HCOOH with High Selectivity and Energy Efficiency over Bi/rGO Catalyst. Small Methods, 2020, 4, 1900846.	4.6	70
153	High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 410-416.	2.6	69
154	An organic chromium-free conversion coating on AZ91D magnesium alloy. Applied Surface Science, 2008, 255, 2322-2328.	3.1	68
155	High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors. Scientific Reports, 2016, 6, 31591.	1.6	68
156	Low-temperature hydrothermal synthesis of \hat{l}_{\pm} -Fe/Fe ₃ O ₄ nanocomposite for fast Congo red removal. Dalton Transactions, 2013, 42, 2572-2579.	1.6	67
157	Efficient visible-light-driven hydrogen generation from water splitting catalyzed by highly stable CdS@Mo ₂ C–C core–shell nanorods. Journal of Materials Chemistry A, 2017, 5, 15862-15868.	5.2	67
158	Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Applied Surface Science, 2009, 255, 6978-6984.	3.1	66
159	Al13@Pt42 Core-Shell Cluster for Oxygen Reduction Reaction. Scientific Reports, 2014, 4, 5205.	1.6	66
160	Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nature Communications, 2019, 10, 4292.	5.8	66
161	Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys. Materials & Design, 2013, 44, 223-227.	5.1	65
162	Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. Physical Chemistry Chemical Physics, 2014, 16, 22995-23002.	1.3	65

#	Article	IF	Citations
163	A Waterâ€∤Fireproof Flexible Lithium–Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator. Advanced Materials, 2018, 30, 1703791.	11.1	65
164	Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-lon Battery. Nano-Micro Letters, 2022, 14 , .	14.4	65
165	Melting thermodynamics of nanocrystals embedded in a matrix. Acta Materialia, 2000, 48, 4791-4795.	3.8	64
166	High Density Arrayed Ni/NiO Core-shell Nanospheres Evenly Distributed on Graphene for Ultrahigh Performance Supercapacitor. Scientific Reports, 2017, 7, 17709.	1.6	64
167	Nonprecious Intermetallic Al ₇ Cu ₄ Ni Nanocrystals Seamlessly Integrated in Freestanding Bimodal Nanoporous Copper for Efficient Hydrogen Evolution Catalysis. Advanced Functional Materials, 2018, 28, 1706127.	7.8	64
168	In Situ CVD Derived Co–N–C Composite as Highly Efficient Cathode for Flexible Li–O ₂ Batteries. Small, 2018, 14, e1800590.	5.2	64
169	Metal-organic framework derived Co3O4@Mo-Co3S4-Ni3S2 heterostructure supported on Ni foam for overall water splitting. Chemical Engineering Journal, 2021, 413, 127482.	6.6	64
170	A New Approach to Detect Congestive Heart Failure Using Short-Term Heart Rate Variability Measures. PLoS ONE, 2014, 9, e93399.	1.1	64
171	The performance of surfactant on the surface characteristics of electroless nickel coating on magnesium alloy. Progress in Organic Coatings, 2012, 74, 788-793.	1.9	63
172	Finite size effect on melting enthalpy and melting entropy of nanocrystals. Physica B: Condensed Matter, 1999, 270, 249-254.	1.3	62
173	Adsorption of Li on single-layer silicene for anodes of Li-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 8887-8896.	1.3	62
174	Strain rate sensitivity of face-centered-cubic nanocrystalline materials based on dislocation deformation. Journal of Applied Physics, 2006, 99, 076103.	1.1	61
175	Optical and magnetic properties of Ndâ€doped ZnO nanoparticles. Crystal Research and Technology, 2012, 47, 713-718.	0.6	61
176	Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nature Communications, 2022, 13, 576.	5.8	61
177	Surface energies of several ceramics with NaCl structure. Surface Science, 2006, 600, 257-264.	0.8	60
178	Prediction of Silicon Nanowires as Photocatalysts for Water Splitting: Band Structures Calculated Using Density Functional Theory. Journal of Physical Chemistry C, 2011, 115, 3425-3428.	1.5	60
179	A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors. Journal of Materials Chemistry A, 2020, 8, 17507-17515.	5.2	60
180	In situ prepared reduced graphene oxide/CoO nanowires mutually-supporting porous structure with enhanced lithium storage performance. Electrochimica Acta, 2016, 190, 276-284.	2.6	58

#	Article	IF	CITATIONS
181	Size effects on Curie temperature of ferroelectric particles. Applied Physics A: Materials Science and Processing, 2004, 78, 703-704.	1.1	57
182	Stability of Ni in nitinol oxide surfaces. Acta Biomaterialia, 2011, 7, 892-899.	4.1	57
183	Rational Design of Ag ₃₈ Cluster Supported by Graphdiyne for Catalytic CO Oxidation. Journal of Physical Chemistry C, 2017, 121, 3463-3468.	1.5	57
184	Hollow Ni–NiO nanoparticles embedded in porous carbon nanosheets as a hybrid anode for sodium-ion batteries with an ultra-long cycle life. Journal of Materials Chemistry A, 2018, 6, 12663-12671.	5.2	57
185	Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction <i>via</i> Se atom doping. Physical Chemistry Chemical Physics, 2019, 21, 14583-14588.	1.3	57
186	Mesoporous Nitrogenâ€Doped Carbon Nanospheres as Sulfur Matrix and a Novel Chelateâ€Modified Separator for Highâ€Performance Roomâ€Temperature Naâ€S Batteries. Small, 2020, 16, e1907464.	5.2	57
187	Thermal stability of interaction between the CO molecules and the Al doped graphene. Physical Chemistry Chemical Physics, 2009, 11, 1683.	1.3	56
188	Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries. International Journal of Hydrogen Energy, 2016, 41, 14807-14812.	3.8	56
189	Adsorption of CO on Surfaces of 4d and 5d Elements in Group VIII. Journal of Physical Chemistry C, 2007, 111, 1005-1009.	1.5	55
190	Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceramics International, 2014, 40, 5107-5110.	2.3	55
191	Sheet-membrane Mn-doped nickel hydroxide encapsulated <i>via</i> heterogeneous Ni ₃ S ₂ nanoparticles for efficient alkaline battery–supercapacitor hybrid devices. Journal of Materials Chemistry A, 2018, 6, 19020-19029.	5.2	55
192	An elevated temperature Mg–Dy–Zn alloy with long period stacking ordered phase by extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3609-3614.	2.6	54
193	Structural Selectivity of CO Oxidation on Fe/N/C Catalysts. Journal of Physical Chemistry C, 2012, 116, 17572-17579.	1.5	54
194	A start of the renaissance for nickel metal hydride batteries: a hydrogen storage alloy series with an ultra-long cycle life. Journal of Materials Chemistry A, 2017, 5, 1145-1152.	5.2	54
195	Suppressing Sodium Dendrites by Multifunctional Polyvinylidene Fluoride (PVDF) Interlayers with Nonthrough Pores and High Flux/Affinity of Sodium Ions toward Long Cycle Life Sodium Oxygenâ€Batteries. Advanced Functional Materials, 2018, 28, 1703931.	7.8	54
196	Size effect on the bandgap of Il–VI semiconductor nanocrystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 131, 191-194.	1.7	53
197	The Effect of Alloying on the Bandgap Energy of Nanoscaled Semiconductor Alloys. Advanced Functional Materials, 2008, 18, 1422-1429.	7.8	53
198	Deformation-induced localized solid-state amorphization in nanocrystalline nickel. Scientific Reports, 2012, 2, 493.	1.6	53

#	Article	IF	CITATIONS
199	Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-lon Batteries. Scientific Reports, 2013, 3, 2878.	1.6	53
200	Selfâ€assembled UCSTâ€Type Micelles as Potential Drug Carriers for Cancer Therapeutics. Macromolecular Chemistry and Physics, 2015, 216, 1014-1023.	1.1	53
201	Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer. Nanoscale, 2016, 8, 11543-11558.	2.8	53
202	Understanding electro-catalysis by using density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 23782-23802.	1.3	53
203	Thermodynamic phase stabilities of nanocarbon. Carbon, 2006, 44, 79-83.	5.4	52
204	Fabrication and characterization of a novel fluffy polypyrrole fibrous scaffold designed for 3D cell culture. Journal of Materials Chemistry, 2012, 22, 18321.	6.7	52
205	Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study. Physical Chemistry Chemical Physics, 2012, 14, 11715.	1.3	52
206	Facile Synthesis of Non-Graphitizable Polypyrrole-Derived Carbon/Carbon Nanotubes for Lithium-ion Batteries. Scientific Reports, 2016, 6, 19317.	1.6	52
207	Stacking fault energy of iron-base shape memory alloys. Materials Letters, 1999, 38, 275-277.	1.3	51
208	Size and temperature dependence of nanodiamond–nanographite transition related with surface stress. Diamond and Related Materials, 2002, 11, 234-236.	1.8	51
209	Size-dependent melting depression and lattice contraction of Bi nanocrystals. Physica B: Condensed Matter, 2003, 334, 49-53.	1.3	51
210	A valence electron concentration criterion for glass-formation ability of metallic liquids. Applied Physics Letters, 2003, 82, 2984-2986.	1.5	51
211	First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes. Nanotechnology, 2007, 18, 155707.	1.3	50
212	Facile Synthesis of Sulfur–Polypyrrole as Cathodes for Lithium–Sulfur Batteries. ChemElectroChem, 2017, 4, 115-121.	1.7	50
213	Entropy for solid–liquid transition in nanocrystals. Materials Letters, 1998, 37, 79-82.	1.3	49
214	Finite size effect on glass transition temperatures. Thin Solid Films, 1999, 354, 283-286.	0.8	49
215	Influence of preparation methods on photoluminescence properties of ZnO films on quartz glass. Transactions of Nonferrous Metals Society of China, 2008, 18, 145-149.	1.7	49
216	Boosting the OER/ORR/HER activity of Ru-doped Ni/Co oxides heterostructure. Chemical Engineering Journal, 2022, 439, 135634.	6.6	49

#	Article	IF	CITATIONS
217	Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Physical Review B, 2003, 67, .	1.1	48
218	Modeling lattice expansion and cohesive energy of nanostructured materials. Applied Physics Letters, 2009, 95, .	1.5	48
219	Reversible Transition of Graphene from Hydrophobic to Hydrophilic in the Presence of an Electric Field. Journal of Physical Chemistry C, 2012, 116, 19321-19326.	1.5	48
220	Physicochemical insight into gap openings in graphene. Scientific Reports, 2013, 3, 1524.	1.6	48
221	From two-dimension to one-dimension: the curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 17479-17486.	1.3	48
222	Facile synthesis of porous Nb2O5 microspheres as anodes for lithium-ion batteries. International Journal of Hydrogen Energy, 2017, 42, 6065-6071.	3.8	48
223	Potential application of 2D monolayer \hat{l}^2 -GeSe as an anode material in Na/K ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 30290-30296.	1.3	48
224	Strain tuned InSe/MoS ₂ bilayer van der Waals heterostructures for photovoltaics or photocatalysis. Physical Chemistry Chemical Physics, 2018, 20, 17574-17582.	1.3	48
225	A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction. Journal of Materials Chemistry A, 2020, 8, 15086-15093.	5.2	48
226	Size-dependent elastic modulus of Cu and Au thin films. Solid State Communications, 2002, 121, 453-455.	0.9	47
227	Hydrogen adsorption on Ce/BNNT systems: A DFT study. International Journal of Hydrogen Energy, 2012, 37, 5090-5099.	3.8	47
228	Nickel Cluster Growth on Defect Sites of Graphene: A Computational Study. Angewandte Chemie - International Edition, 2013, 52, 14237-14241.	7.2	47
229	External electric field induced hydrogen storage/release on calcium-decorated single-layer and bilayer silicene. Physical Chemistry Chemical Physics, 2014, 16, 23985-23992.	1.3	47
230	Ultrahighâ€Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electronâ€Correlated Oxides. Advanced Science, 2016, 3, 1500319.	5.6	47
231	CO ₂ Reduction Mechanism on the Pb(111) Surface: Effect of Solvent and Cations. Journal of Physical Chemistry C, 2017, 121, 19767-19773.	1.5	47
232	Generating Defectâ€Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie, 2019, 131, 9564-9569.	1.6	47
233	Activated basal planes of WS ₂ by intrinsic defects as catalysts for the electrocatalytic nitrogen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 25961-25968.	5.2	47
234	Electronic Properties of Nitrogen-/Boron-Doped Graphene Nanoribbons With Armchair Edges. IEEE Nanotechnology Magazine, 2010, 9, 78-81.	1,1	46

#	Article	IF	Citations
235	Electron Scattering and Electrical Conductance in Polycrystalline Metallic Films and Wires: Impact of Grain Boundary Scattering Related to Melting Point. ACS Nano, 2010, 4, 3781-3788.	7.3	46
236	High catalytic kinetic performance of amorphous CoPt NPs induced on CeO for H2 generation from hydrous hydrazine. International Journal of Hydrogen Energy, 2014, 39, 3755-3761.	3.8	46
237	Surface-amorphized TiO2 nanoparticles anchored on graphene as anode materials for lithium-ion batteries. Journal of Power Sources, 2018, 397, 162-169.	4.0	46
238	Structural, optical and electrical properties of Zn1â^'xCdxO thin films prepared by PLD. Applied Surface Science, 2011, 257, 5657-5662.	3.1	45
239	The Role of Coâ€Adsorbed CO and OH in the Electrooxidation of Formic Acid on Pt(111). Angewandte Chemie - International Edition, 2012, 51, 9448-9452.	7.2	45
240	Single-crystalline Ni(OH)2nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23412-23419.	5.2	45
241	An Integrated Design with new Metalâ€Functionalized Covalent Organic Frameworks for the Effective Electroreduction of CO ₂ . Chemistry - A European Journal, 2018, 24, 11051-11058.	1.7	45
242	Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 581-584.	1.1	44
243	Nucleus–liquid interfacial energy of elements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 278, 160-165.	2.3	44
244	External Electric Field Catalyzed N $<$ sub $>$ 2 $<$ /sub $>$ 0 Decomposition on Mn-Embedded Graphene. Journal of Physical Chemistry C, 2012, 116, 20342-20348.	1.5	44
245	A Novel and Effective Method for Congestive Heart Failure Detection and Quantification Using Dynamic Heart Rate Variability Measurement. PLoS ONE, 2016, 11, e0165304.	1.1	44
246	Complete Dehydrogenation of N ₂ H ₄ BH ₃ over Nobleâ€Metalâ€Free Ni _{0.5} Fe _{0.5} –CeO <i>_x</i> /Sub>Activity and 100% H ₂ Selectivity. Advanced Energy Materials, 2018, 8, 1800625.	10.2	44
247	Insight into the excellent catalytic activity of (CoMo)S2/graphene for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 258, 118012.	10.8	44
248	Al, Fe-codoped CoP nanoparticles anchored on reduced graphene oxide as bifunctional catalysts to enhance overall water splitting. Chemical Engineering Journal, 2021, 421, 127856.	6.6	44
249	Is Au55 or Au38 Cluster a Threshold Catalyst for Styrene Epoxidation?. Journal of Physical Chemistry C, 2010, 114, 1148-1153.	1.5	43
250	Facile Synthesis of an Ag ₂ O–ZnO Nanohybrid and Its High Photocatalytic Activity. ChemPlusChem, 2012, 77, 931-935.	1.3	43
251	Melting enthalpy depression of nanocrystals. Materials Letters, 2002, 56, 1019-1021.	1.3	42
252	Temperature–pressure phase diagram of silicon determined by Clapeyron equation. Solid State Communications, 2004, 129, 437-441.	0.9	42

#	Article	IF	CITATIONS
253	Glass Transition of Low-Dimensional Polystyrene. Macromolecular Rapid Communications, 2004, 25, 825-828.	2.0	42
254	Dependence of the blocking temperature in exchange biased ferromagnetic/antiferromagnetic bilayers on the thickness of the antiferromagnetic layer. Nanotechnology, 2007, 18, 155701.	1.3	42
255	A DFT Study on Electronic Structures and Catalysis of Ag12O6/Ag(111) for Ethylene Epoxidation. Journal of Physical Chemistry C, 2007, 111, 4042-4046.	1.5	42
256	First principles study on the hydrophilic and conductive graphene doped with Al atoms. Physical Chemistry Chemical Physics, 2013, 15, 10859.	1.3	42
257	A Strategy for Synthesis of Nanosheets Consisting of Alternating Spinel Li ₄ Ti ₅ O ₁₂ and Rutile TiO ₂ Lamellas for High-Rate Anodes of Lithium-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4649-4657.	4.0	42
258	Targeted Ultrasound-Triggered Phase Transition Nanodroplets for Her2-Overexpressing Breast Cancer Diagnosis and Gene Transfection. Molecular Pharmaceutics, 2017, 14, 984-998.	2.3	42
259	Ballâ€Cactusâ€Like Bi Embedded in Nâ€Riched Carbon Nanonetworks Enables the Best Potassium Storage Performance. Advanced Functional Materials, 2021, 31, 2103067.	7.8	42
260	MOFâ€Derived Fe ₇ S ₈ Nanoparticles/Nâ€Doped Carbon Nanofibers as an Ultraâ€Stable Anode for Sodiumâ€Ion Batteries. Small, 2021, 17, e2102349.	5.2	42
261	Melting and surface melting of low-dimensional In crystals. Solid State Communications, 2004, 130, 37-39.	0.9	41
262	Structures and Quantum Conduction of Copper Nanowires under Electric Fields Using First Principles. Journal of Physical Chemistry C, 2008, 112, 9045-9049.	1.5	41
263	P3-type K _{0.33} Co _{0.53} Mn _{0.47} O ₂ Â-0.39H ₂ O: a novel bifunctional electrode for Na-ion batteries. Materials Horizons, 2017, 4, 1122-1127.	6.4	41
264	Moâ€∤Coâ€Nâ€C Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2102285.	7.8	41
265	Effectively boosting selective ammonia synthesis on electron-deficient surface of MoB2. Applied Catalysis B: Environmental, 2022, 305, 121023.	10.8	41
266	Layered nanostructured Ni with modulated hardness fabricated by surfactant-assistant electrodeposition. Scripta Materialia, 2007, 57, 233-236.	2.6	40
267	Facile Synthesis ZnS/ZnO/Ni(OH)2 Composites Grown on Ni Foam: A Bifunctional Materials for Photocatalysts and Supercapacitors. Scientific Reports, 2017, 7, 3021.	1.6	40
268	Electronic structure of silicene: effects of the organic molecular adsorption and substrate. Journal of Materials Chemistry C, 2017, 5, 627-633.	2.7	40
269	Integrated Cu ₃ N porous nanowire array electrode for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18972-18976.	5.2	40
270	Potassium-ion batteries with novel N, O enriched corn silk-derived carbon as anode exhibiting excellent rate performance. Journal of Power Sources, 2021, 481, 228644.	4.0	40

#	Article	IF	Citations
271	Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material. Journal of Materials Chemistry A, 2021, 9, 5740-5750.	5.2	40
272	Theoretical Study of C ₂ H ₂ Adsorbed on Low-Index Cu Surfaces. Journal of Physical Chemistry C, 2007, 111, 18189-18194.	1.5	39
273	Mechanistic Insights into the Unique Role of Copper in CO ₂ Electroreduction Reactions. ChemSusChem, 2017, 10, 387-393.	3.6	39
274	The size dependence of the diamond-graphite transition. Journal of Physics Condensed Matter, 2000, 12, 5623-5627.	0.7	38
275	Size and Structural Dependence of Cohesive Energy in Cu. Journal of Physical Chemistry C, 2008, 112, 18840-18845.	1.5	38
276	Electronic and Magnetic Engineering in Zigzag Graphene Nanoribbons Having a Topological Line Defect at Different Positions with or without Strain. Journal of Physical Chemistry C, 2013, 117, 4791-4799.	1.5	38
277	Nanoporous Au/SnO/Ag heterogeneous films for ultrahigh and uniform surface-enhanced Raman scattering. Journal of Materials Chemistry C, 2014, 2, 7216.	2.7	38
278	Pressure evolution of the potential barriers of phase transition of MoS ₂ , MoSe ₂ and MoTe ₂ . Physical Chemistry Chemical Physics, 2016, 18, 12080-12085.	1.3	38
279	High spin polarization ultrafine Rh nanoparticles on CNT for efficient electrochemical N2 fixation to ammonia. Applied Catalysis B: Environmental, 2021, 298, 120592.	10.8	38
280	Bending instability characteristics of double-walled carbon nanotubes. Physical Review B, 2005, 71, .	1.1	37
281	Size and interface effects on Curie temperature of perovskite ferroelectric nanosolids. Journal of Nanoparticle Research, 2007, 9, 595-603.	0.8	37
282	Cohesive Energy of Clusters Referenced by Wulff Construction. Journal of Physical Chemistry C, 2009, 113, 7594-7597.	1.5	37
283	Size and pressure effects on solid transition temperatures of ZrO2. Scripta Materialia, 2006, 54, 2091-2094.	2.6	36
284	Ductileâ€"brittleâ€"ductile transition in an electrodeposited 13 nanometer grain sized Niâ€"8.6wt.% Co alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 75-81.	2.6	36
285	Crystallization behavior of poly(vinylidene fluoride)/montmorillonite nanocomposite. Polymer Engineering and Science, 2009, 49, 491-498.	1.5	36
286	Surface Energy and Electronic Structures of Ag Quasicrystal Clusters. Journal of Physical Chemistry C, 2009, 113, 1168-1170.	1.5	36
287	A reversible switch for hydrogen adsorption and desorption: electric fields. Physical Chemistry Chemical Physics, 2009, 11, 9233.	1.3	36
288	Hydrogen Adsorption on Eu/SWCNT Systems: A DFT Study. Journal of Physical Chemistry C, 2010, 114, 7733-7737.	1.5	36

#	Article	IF	CITATIONS
289	Ni/La2O3 catalyst containing low content platinum–rhodium for the dehydrogenation of N2H4·H2O at room temperature. Journal of Power Sources, 2014, 262, 386-390.	4.0	36
290	Hydrogen storage alloys/reduced graphite oxide: an efficient hybrid electrode with enhanced high-rate dischargeability. Electrochimica Acta, 2016, 200, 59-65.	2.6	36
291	Cobalt-porphine catalyzed CO ₂ electro-reduction: a novel protonation mechanism. Physical Chemistry Chemical Physics, 2017, 19, 15067-15072.	1.3	36
292	How to improve the stability and rate performance of lithium-ion batteries with transition metal oxide anodes. Journal of Materials Research, 2017, 32, 16-36.	1,2	36
293	Electroreduction of CO ₂ on Cu Clusters: The Effects of Size, Symmetry, and Temperature. ChemElectroChem, 2019, 6, 1831-1837.	1.7	36
294	Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe ₂ embellished nitrogen-doped hollow carbon spheres as polysulfide barriers. Journal of Materials Chemistry A, 2021, 9, 3451-3463.	5.2	36
295	Study of the electrodeposition of Al–Mn amorphous alloys from molten salts. Surface and Coatings Technology, 1998, 106, 135-139.	2.2	35
296	Nucleation temperature of elements. Journal of Chemical Physics, 2002, 117, 10269-10273.	1.2	35
297	Hydrothermal synthesis of copper sulfide with novel hierarchical structures and its application in lithium-ion batteries. Applied Surface Science, 2013, 277, 268-271.	3.1	35
298	Enzymatic PEGylated Poly(lactone- <i>co</i> - \hat{l}^2 -amino ester) Nanoparticles as Biodegradable, Biocompatible and Stable Vectors for Gene Delivery. ACS Applied Materials & amp; Interfaces, 2016, 8, 490-501.	4.0	35
299	Adsorption of Na on silicene for potential anode for Na-ion batteries. Electrochimica Acta, 2019, 297, 497-503.	2.6	35
300	Magnetic properties and electron spin resonance of charge ordering manganite Y0.5Ca0.5MnO3. Chemical Physics Letters, 2005, 401, 585-589.	1.2	34
301	First-principles calculations of Cd-doped ZnO thin films deposited by pulse laser deposition. Solid State Sciences, 2012, 14, 698-704.	1.5	34
302	Properties and application of Fe–6Si–14Mn–9Cr–5Ni shape memory alloy. Materials Science and Technology, 2001, 17, 292-295.	0.8	33
303	Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu. Journal of Applied Physics, 2008, 104, .	1.1	33
304	A new strategy to improve the high-rate performance of hydrogen storage alloys with MoS2 nanosheets. Journal of Power Sources, 2016, 333, 17-23.	4.0	33
305	Nanoporous gold supported chromium-doped NiFe oxyhydroxides as high-performance catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 9690-9697.	5.2	33
306	A transferable machine-learning scheme from pure metals to alloys for predicting adsorption energies. Journal of Materials Chemistry A, 2022, 10, 872-880.	5.2	33

#	Article	IF	Citations
307	Glass transition thermodynamics of organic nanoparticles. Physica B: Condensed Matter, 2001, 293, 232-236.	1.3	32
308	Melting enthalpy depression of nanocrystals based on surface effect. Journal of Materials Science Letters, 2002, 21, 1843-1845.	0.5	32
309	Effects of seed layer on the structure and property of zinc oxide thin films electrochemically deposited on ITO-coated glass. Applied Surface Science, 2008, 254, 6605-6610.	3.1	32
310	Sulfur/alumina/polypyrrole ternary hybrid material as cathode for lithium-sulfur batteries. International Journal of Hydrogen Energy, 2017, 42, 20749-20758.	3.8	32
311	In-situ synthesized ZnFe 2 O 4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance. Applied Surface Science, 2017, 425, 978-987.	3.1	32
312	Design of bimetallic atomic catalysts for CO ₂ reduction based on an effective descriptor. Journal of Materials Chemistry A, 2021, 9, 4770-4780.	5.2	32
313	Size-Dependent Melting Temperature of Polymers. Macromolecular Theory and Simulations, 2003, 12, 57-60.	0.6	31
314	Effects of the chemical bonding on the optical and mechanical properties for germanium carbide films used as antireflection and protection coating of ZnS windows. Journal of Physics Condensed Matter, 2006, 18, 4231-4241.	0.7	31
315	The Optimal Grain Sized Nanocrystalline Ni with High Strength and Good Ductility Fabricated by a Direct Current Electrodeposition. Advanced Engineering Materials, 2008, 10, 539-546.	1.6	31
316	Structural characteristics of poly(vinylidene fluoride)/clay nanocomposites. Materials Letters, 2008, 62, 747-750.	1.3	31
317	Effects of applied magnetic field and pressures on the magnetic properties of nanocrystalline CoFe2O4 ferrite. Journal of Magnetism and Magnetic Materials, 2010, 322, 2485-2487.	1.0	31
318	Double-peak ageing behavior of Mg–2Dy–0.5Zn alloy. Journal of Alloys and Compounds, 2011, 509, 8268-8275.	2.8	31
319	Enzymatic Synthesis of Poly(butylene- <i>co</i> -sebacate- <i>co</i> -glycolate) Copolyesters and Evaluation of the Copolymer Nanoparticles as Biodegradable Carriers for Doxorubicin Delivery. Macromolecules, 2013, 46, 1743-1753.	2.2	31
320	Ultrathin Mesoporous NiCo ₂ O ₄ Nanosheet Networks as Highâ€Performance Anodes for Lithium Storage. ChemPlusChem, 2015, 80, 1725-1731.	1.3	31
321	Regulating Fe ₂ (MoO ₄) ₃ by Au Nanoparticles for Efficient N ₂ Electroreduction under Ambient Conditions. Advanced Energy Materials, 2021, 11, 2003701.	10.2	31
322	First-principles density-functional calculations on the field emission properties of BN nanocones. Solid State Communications, 2008, 146, 399-402.	0.9	30
323	Dehydrogenation of benzene on Pt(111) surface. Journal of Chemical Physics, 2008, 129, 164705.	1.2	30
324	Microstructure and properties of AlTiNiMnB _x high entropy alloys. Materials Science and Technology, 2008, 24, 376-378.	0.8	30

#	Article	IF	Citations
325	Thermodynamics of Materials. , 2011, , .		30
326	Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy. Physical Chemistry Chemical Physics, 2013, 15, 21016.	1.3	30
327	Micelles of enzymatically synthesized PEG-poly(amine-co-ester) block copolymers as pH-responsive nanocarriers for docetaxel delivery. Colloids and Surfaces B: Biointerfaces, 2014, 115, 349-358.	2.5	30
328	Cu4 Cluster Doped Monolayer MoS2 for CO Oxidation. Scientific Reports, 2015, 5, 11230.	1.6	30
329	Narrowâ€Gap Quantum Wires Arising from the Edges of Monolayer MoS ₂ Synthesized on Graphene. Advanced Materials Interfaces, 2016, 3, 1600332.	1.9	30
330	Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries. Scientific Reports, 2016, 6, 27601.	1.6	30
331	Synergistic effect of tubular amorphous carbon and polypyrrole on polysulfides in Li-S batteries. Journal of Electroanalytical Chemistry, 2017, 806, 41-49.	1.9	30
332	Highly Nitrogenâ€Doped Porous Carbon Nanosheets as Highâ€Performance Anode for Potassiumâ€lon Batteries. Batteries and Supercaps, 2020, 3, 185-193.	2.4	30
333	NiS ₂ nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries. Nanoscale Advances, 2020, 2, 512-519.	2.2	30
334	Suppressed Shuttle via Inhibiting the Formation of Longâ€Chain Lithium Polysulfides and Functional Separator for Greatly Improved Lithium–Organosulfur Batteries Performance. Advanced Energy Materials, 2020, 10, 1902695.	10.2	30
335	Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia. Chemical Engineering Journal, 2022, 433, 133752.	6.6	30
336	Effects of Coriolis force and centrifugal force on acoustic waves propagating along the surface of a piezoelectric half-space. Zeitschrift Fur Angewandte Mathematik Und Physik, 2001, 52, 950-965.	0.7	29
337	Effect of pressure on melting temperature of silicon determined by Clapeyron equation. Chemical Physics Letters, 2003, 372, 156-159.	1.2	29
338	Modeling size and surface effects on ZnS phase selection. Chemical Physics Letters, 2008, 455, 202-206.	1.2	29
339	The determination of Young's modulus in noble metal nanowires. Applied Physics Letters, 2008, 93, 081905.	1.5	29
340	External Electric Field Modulated Electronic and Structural Properties of $\tilde{a} \in 111\tilde{a} \in \infty$ Si Nanowires. Journal of Physical Chemistry C, 2009, 113, 10384-10389.	1.5	29
341	First-Principles Calculations on the Emission Properties of Pristine and N-Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 812-818.	1.5	29
342	Ultrasensitive detection and rapid identification of multiple foodborne pathogens with the naked eyes. Biosensors and Bioelectronics, 2015, 71, 186-193.	5.3	29

#	Article	IF	CITATIONS
343	Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement. Colloids and Surfaces B: Biointerfaces, 2015, 131, 39-46.	2.5	29
344	Syntheses and characterizations of two curcumin-based cocrystals. Inorganic Chemistry Communication, 2015, 55, 92-95.	1.8	29
345	Scalable Nanoporous (Pt _{1–<i>x</i>} Ni _{<i>x</i>}) ₃ Al Intermetallic Compounds as Highly Active and Stable Catalysts for Oxygen Electroreduction. ACS Applied Materials & amp; Interfaces, 2016, 8, 32910-32917.	4.0	29
346	Steric Hindrance in Sulfur Vacancy of Monolayer MoS ₂ Boosts Electrochemical Reduction of Carbon Monoxide to Methane. ChemSusChem, 2018, 11, 1455-1459.	3.6	29
347	Size effect on melting temperature of nanostructured drugs. Materials Chemistry and Physics, 2007, 103, 1-4.	2.0	28
348	Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size. Materials Science & Dependence amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 479, 136-141.	2.6	28
349	Synthesis of α silicon nitride single-crystalline nanowires by nitriding cryomilled nanocrystalline silicon powder. Scripta Materialia, 2009, 60, 737-740.	2.6	28
350	Revealing the Active Intermediates in the Oxidation of Formic Acid on Au and Pt(111). Chemistry - A European Journal, 2014, 20, 11005-11012.	1.7	28
351	Cu surfaces with controlled structures: From intrinsically hydrophilic to apparently superhydrophobic. Applied Surface Science, 2014, 290, 320-326.	3.1	28
352	Enhanced optical absorption and photocatalytic activity of Cu/N-codoped TiO2 nanocrystals. Materials Science in Semiconductor Processing, 2014, 24, 247-253.	1.9	28
353	Synthesis of open helmet-like carbon skeletons for application in lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3877-3883.	5.2	28
354	Three-dimensional nanoporous N-doped graphene/iron oxides as anode materials for high-density energy storage in asymmetric supercapacitors. Chemical Engineering Journal, 2018, 335, 467-474.	6.6	28
355	A sparsity-based stochastic pooling mechanism for deep convolutional neural networks. Neural Networks, 2018, 105, 340-345.	3.3	28
356	Graphene-MoS ₂ vertically anchored on an MXene-derived accordion-like TiO ₂ /C skeleton: an ultrastable HER catalyst. Journal of Materials Chemistry A, 2020, 8, 14223-14233.	5.2	28
357	Size dependent adsorption on nanocrystal surfaces. Chemical Physics, 2005, 309, 303-307.	0.9	27
358	Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester. Acta Mechanica Solida Sinica, 2007, 20, 296-308.	1.0	27
359	Electronic properties of graphene nanoribbons with armchair-shaped edges. Molecular Simulation, 2008, 34, 1085-1090.	0.9	27
360	Uniaxial strain modulated band gap of ZnO nanostructures. Applied Physics Letters, 2010, 96, 213101.	1.5	27

#	Article	IF	Citations
361	Effects of alkali metal adsorption on the structural and field emission properties of graphene. Diamond and Related Materials, 2010, 19, 1377-1381.	1.8	27
362	SnO ₂ nanoparticles embedded in 3D nanoporous/solid copper current collectors for high-performance reversible lithium storage. Journal of Materials Chemistry A, 2014, 2, 15519.	5.2	27
363	Enzymatic synthesis of poly(ω-pentadecalactone-co-butylene-co-3,3′-dithiodipropionate) copolyesters and self-assembly of the PEGylated copolymer micelles as redox-responsive nanocarriers for doxorubicin delivery. Polymer Chemistry, 2015, 6, 1997-2010.	1.9	27
364	An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva. Nanomaterials, 2017, 7, 67.	1.9	27
365	3D hierarchical self-supported NiO/Co ₃ O ₄ @C/CoS ₂ nanocomposites as electrode materials for high-performance supercapacitors. Nanoscale Advances, 2020, 2, 2785-2791.	2.2	27
366	Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia. Chemical Engineering Journal, 2021, 426, 131843.	6.6	27
367	Shape Memory Effects in an Fel4Mn6Si9Cr5Ni Alloy for Joining Pipe ISIJ International, 2000, 40, 1124-1126.	0.6	26
368	Phase Stability of Nanoanatase. Advanced Engineering Materials, 2003, 5, 787-788.	1.6	26
369	Size Effects on Miscibility and Glass Transition Temperature of Binary Polymer Blend Films. Langmuir, 2006, 22, 1241-1246.	1.6	26
370	Oxidation of CO Catalyzed by a Cu Cluster: Influence of an Electric Field. ChemPhysChem, 2009, 10, 3295-3302.	1.0	26
371	Preparation and characterization of Poly(\hat{l}^3 -glutamic acid) hydrogels as potential tissue engineering scaffolds. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1507-1514.	2.0	26
372	In situ grown Co3O4 on hydrogen storage alloys for enhanced electrochemical performance. International Journal of Hydrogen Energy, 2016, 41, 8946-8953.	3.8	26
373	Enhanced high-rate performance of ball-milled MmNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys with graphene nanoplatelets. Journal of Alloys and Compounds, 2017, 693, 126-131.	2.8	26
374	A strategy for designing new AB 4.5 -type hydrogen storage alloys with high capacity and long cycling life. Journal of Power Sources, 2018, 398, 42-48.	4.0	26
375	Flower-like carbon supported Pd–Ni bimetal nanoparticles catalyst for formic acid electrooxidation. Electrochimica Acta, 2019, 324, 134816.	2.6	26
376	Single metal atoms regulated flexibly by a 2D InSe substrate for CO ₂ reduction electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 8210-8217.	5.2	26
377	MOF-derived NiO–NiCo ₂ O ₄ @PPy hollow polyhedron as a sulfur immobilizer for lithium–sulfur batteries. New Journal of Chemistry, 2019, 43, 18294-18303.	1.4	26
378	Engineering oxygen vacancy on iron oxides/hollow carbon cloth electrode toward stable lithium-ion batteries. Chemical Engineering Journal, 2020, 388, 124229.	6.6	26

#	Article	IF	Citations
379	Enhanced ductility of high-strength electrodeposited nanocrystalline Ni–Co alloy with fine grain size. Journal of Alloys and Compounds, 2010, 504, S439-S442.	2.8	25
380	Antiferromagnet topological insulators with AB2CH eusler structure. Physical Review B, 2011, 83, .	1.1	25
381	Strain-hardening and warm deformation behaviors of extruded Mg–Sn–Yb alloy sheet. Journal of Magnesium and Alloys, 2014, 2, 116-123.	5.5	25
382	(De)Lithiation of tubular polypyrrole-derived carbon/sulfur composite in lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2016, 780, 26-31.	1.9	25
383	Size dependence of the bulk modulus of Si nanocrystals. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	0.8	25
384	Improved electrochemical performance of Li-S battery with carbon and polymer-modified cathode. Applied Surface Science, 2019, 479, 265-272.	3.1	25
385	Constructing ultra-long life and super-rate rechargeable aqueous zinc-ion batteries by integrating Mn doped V6O13 nanoribbons with sulfur-nitrogen modified porous carbon. Materials Today Energy, 2021, 19, 100593.	2.5	25
386	Ga doping enables superior alkaline hydrogen evolution reaction performances of CoP. Chemical Engineering Journal, 2022, 429, 132012.	6.6	25
387	Tri-metallic AuPdIr nanoalloy towards efficient hydrogen generation from formic acid. Applied Catalysis B: Environmental, 2022, 309, 121228.	10.8	25
388	Thermodynamic superheating and relevant interface stability of low-dimensional metallic crystals. Journal of Physics Condensed Matter, 2001, 13, 565-571.	0.7	24
389	Temperature dependence of self-diffusion coefficient in several liquid metals. Journal of Non-Crystalline Solids, 2006, 352, 2797-2800.	1.5	24
390	Re-examination of Casimir limit for phonon traveling in semiconductor nanostructures. Applied Physics Letters, 2008, 92, 113101.	1.5	24
391	Oxidation Behavior of CO Catalyzed by Several Decahedral Au Clusters: Role of Cluster Stability and Electric Field. Journal of Physical Chemistry C, 2010, 114, 21094-21099.	1.5	24
392	Single Layer of Polymeric Metal–Phthalocyanine: Promising Substrate to Realize Single Pt Atom Catalyst with Uniform Distribution. Journal of Physical Chemistry C, 2014, 118, 2122-2128.	1.5	24
393	Highly Uniform Perfluoropropane-Loaded Cerasomal Microbubbles As a Novel Ultrasound Contrast Agent. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15024-15032.	4.0	24
394	In situ grown Co3O4 nanocubes on N-doped graphene as a synergistic hybrid for applications in nickel metal hydride batteries. International Journal of Hydrogen Energy, 2018, 43, 18421-18435.	3.8	24
395	Design of Effective Graphene with the TM/O Moiety for the Oxygen Electrode Reaction. ACS Applied Energy Materials, 2020, 3, 260-267.	2.5	24
396	Low-crystallinity mesoporous NiGaFe hydroxide nanosheets on macroporous Ni foam for high-efficiency oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 6223-6231.	5.2	24

#	Article	IF	CITATIONS
397	Rational design of an Fe cluster catalyst for robust nitrogen activation. Journal of Materials Chemistry A, 2021, 9, 21219-21227.	5.2	24
398	MnO/Mn ₂ O ₃ Nanowires Coated by Porous N-Doped Carbon for Long-Cycle and High-Rate Lithium-lon Batteries. ACS Applied Nano Materials, 2020, 3, 5612-5624.	2.4	24
399	Surface acoustic waves propagating over a rotating piezoelectric half-space. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 998-1004.	1.7	23
400	Curie transition temperature of ferromagnetic low-dimensional metals. Thin Solid Films, 2005, 472, 328-333.	0.8	23
401	Selected crystallization of water as a function of size. Chemical Physics Letters, 2006, 421, 251-255.	1.2	23
402	The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface. Nanotechnology, 2008, 19, 275710.	1.3	23
403	The origin of the ultrahigh strength and good ductility in nanotwinned copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4270-4274.	2.6	23
404	Molecular orientation transformation in initial growth stage of disk-like phthalocyanine during organic vapor deposition process. Chemical Science, 2012, 3, 528-536.	3.7	23
405	Self-Grown Ni(OH) < sub > 2 < /sub > Layer on Bimodal Nanoporous AuNi Alloys for Enhanced Electrocatalytic Activity and Stability. ACS Applied Materials & amp; Interfaces, 2014, 6, 16966-16973.	4.0	23
406	Mechanistic Understanding of CO ₂ Electroreduction on Cu ₂ O. Journal of Physical Chemistry C, 2018, 122, 5472-5480.	1.5	23
407	The VN3 embedded graphane with the improved selectivity for nitrogen fixation. Applied Surface Science, 2020, 513, 145855.	3.1	23
408	Mn-doped ZnO microspheres as cathode materials for aqueous zinc ion batteries with ultrastability up to 10 000 cycles at a large current density. Chemical Engineering Journal, 2021, 421, 127770.	6.6	23
409	Designing fluorographene with FeN4 and CoN4 moieties for oxygen electrode reaction: A density functional theory study. Applied Surface Science, 2021, 537, 147846.	3.1	23
410	Mechanistic insights into the electrochemical Li/Na/K-ion storage for aqueous bismuth anode. Energy Storage Materials, 2022, 45, 33-39.	9.5	23
411	The heat capacity of solid Ni-Ti alloys in the temperature range 120 to 800 K. Journal of Phase Equilibria and Diffusion, 1993, 14, 494-500.	0.3	22
412	Ge1–xCx double-layer antireflection and protection coatings. Applied Surface Science, 2006, 252, 8135-8138.	3.1	22
413	A novel electrodeposited nanostructured Ni coating with grain size gradient distribution. Surface and Coatings Technology, 2008, 203, 142-147.	2.2	22
414	First-principles calculations on the mechanical properties of niobium nitrides. Solid State Communications, 2009, 149, 725-728.	0.9	22

#	Article	IF	Citations
415	Site- and Structure-Dependent Cohesive Energy in Several Ag Clusters. Journal of Physical Chemistry C, 2009, 113, 10907-10912.	1.5	22
416	Experimental and firstâ€principle investigation of Cuâ€doped ZnO ferromagnetic powders. Crystal Research and Technology, 2011, 46, 1143-1148.	0.6	22
417	Microstructure and Magnetic Properties of FeNiCuMnTiSn _{<i>x</i>} High Entropy Alloys. Advanced Engineering Materials, 2012, 14, 919-922.	1.6	22
418	Optical properties of Cu-doped ZnO nanoparticles experimental and first-principles theory research. Journal of Materials Science: Materials in Electronics, 2012, 23, 1521-1526.	1.1	22
419	Water-soluble amorphous iron oxide nanoparticles synthesized by a quickly pestling and nontoxic method at room temperature as MRI contrast agents. Chemical Engineering Journal, 2014, 235, 231-235.	6.6	22
420	Oleylamine-stabilized Cu 0.9 Ni 0.1 nanoparticles as efficient catalyst for ammonia borane dehydrogenation. International Journal of Hydrogen Energy, 2017, 42, 25251-25257.	3.8	22
421	A bifunctional two dimensional TM ₃ (HHTP) ₂ monolayer and its variations for oxygen electrode reactions. RSC Advances, 2017, 7, 54332-54340.	1.7	22
422	Clarifying the capacity deterioration mechanism sheds light on the design of ultra-long-life hydrogen storage alloys. Chemical Engineering Journal, 2018, 352, 325-332.	6.6	22
423	Enhanced reversible capability of a macroporous ZnMn ₂ O ₄ /C microsphere anode with a water-soluble binder for long-life and high-rate lithium-ion storage. Inorganic Chemistry Frontiers, 2019, 6, 1535-1545.	3.0	22
424	Lowâ€Temperature Conversion of Alcohols into Bulky Nanoporous Graphene and Pure Hydrogen with Robust Selectivity on CaO. Advanced Materials, 2019, 31, e1807267.	11,1	22
425	Nanoporous Intermetallic Cu ₃ Sn/Cu Hybrid Electrodes as Efficient Electrocatalysts for Carbon Dioxide Reduction. Small, 2021, 17, e2100683.	5.2	22
426	Melting volume change of different crystalline lattices. Physica Status Solidi (B): Basic Research, 2004, 241, 2472-2476.	0.7	21
427	Phase stabilities of fcc Ti nanocrystals. Solid State Communications, 2004, 132, 747-750.	0.9	21
428	Effect of the oxygen pressure on the photoluminescence properties of ZnO thin films by PLD. Journal of Materials Science, 2007, 42, 2678-2683.	1.7	21
429	Structure and Photocatalysis of TiO ₂ /ZnO Double-Layer Film Prepared by Pulsed Laser Deposition. Materials Transactions, 2012, 53, 463-468.	0.4	21
430	Facile preparation of a cobalt hybrid/graphene nanocomposite by in situ chemical reduction: high lithium storage capacity and highly efficient removal of Congo red. Dalton Transactions, 2013, 42, 8070 .	1.6	21
431	Effect of modification degree of nanohydroxyapatite on biocompatibility and mechanical property of injectable poly(methyl methacrylate)â€based bone cement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 576-584.	1.6	21
432	Intermetallic Cu ₅ Zr Clusters Anchored on Hierarchical Nanoporous Copper as Efficient Catalysts for Hydrogen Evolution Reaction. Research, 2020, 2020, 2987234.	2.8	21

#	Article	IF	CITATIONS
433	The heat capacities of solid Ni-Zr alloys and their relationship to the glass transition. Journal of Phase Equilibria and Diffusion, 1991, 12, 538-545.	0.3	20
434	Cp and fractal phase transformation in the shape memory alloy Niî—,52Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 149, 111-120.	2.6	20
435	Temperature–pressure phase diagram of germanium determined by Clapeyron equation. Scripta Materialia, 2004, 51, 1081-1085.	2.6	20
436	Chemical bonding of a-Ge1â^'xCx:H films grown by RF reactive sputtering. Vacuum, 2004, 77, 63-68.	1.6	20
437	Bi-phase transition diagrams of metallic thin multilayers. Acta Materialia, 2005, 53, 1067-1071.	3.8	20
438	Effects of deposition parameters on microstructure of CrN/Si3N4 nanolayered coatings and their thermal stability. Journal of Physics Condensed Matter, 2005, 17, 6405-6413.	0.7	20
439	Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology, 2007, 18, 255706.	1.3	20
440	Theoretical predictions of wurtzite III-nitride nano-materials properties. Physical Chemistry Chemical Physics, 2010, 12, 7203.	1.3	20
441	Effect of cold rolling on tensile properties and microstructure of high nitrogen alloyed austenitic steel. Materials Science and Technology, 2014, 30, 146-151.	0.8	20
442	Curvature effect of SiC nanotubes and sheets for CO2capture and reduction. RSC Advances, 2014, 4, 48994-48999.	1.7	20
443	Effective Descriptor for Designing High-Performance Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 23134-23142.	1.5	20
444	VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: An anode material for superior potassium storage. Nano Materials Science, 2022, 4, 104-112.	3.9	20
445	Universal Principle to Describe Reactivity and Selectivity of CO ₂ Electroreduction on Transition Metals and Single-Atom Catalysts. Journal of Physical Chemistry C, 2020, 124, 25898-25906.	1.5	20
446	Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & Splitting Activi	4.0	20
447	Ultrasmall AuPd nanoclusters on amine-functionalized carbon blacks as high-performance bi-functional catalysts for ethanol electrooxidation and formic acid dehydrogenation. Journal of Energy Chemistry, 2022, 68, 556-563.	7.1	20
448	The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range. Journal of Physics Condensed Matter, 2000, 12, 8819-8824.	0.7	19
449	Modelling of the melting temperature of nano-ice in MCM-41 pores. Journal of Physics Condensed Matter, 2001, 13, L397-L401.	0.7	19
450	Size Range of Solidâ^'Liquid Interface Energy of Organic Crystals. Journal of Physical Chemistry B, 2002, 106, 4266-4268.	1.2	19

#	Article	IF	CITATIONS
451	Comment on "Higher Surface Energy of Free Nanoparticles― Physical Review Letters, 2004, 92, 179601; discussion 179602.	2.9	19
452	Influence of the annealing temperature on violet emission of ZnO films obtained by oxidation of Zn film on quartz glass. Journal of Materials Science, 2006, 41, 2237-2241.	1.7	19
453	Effect of Alloying Mg on Corrosion Resistance of Cu at High Temperature. Journal of the Electrochemical Society, 2007, 154, C153.	1.3	19
454	Finite-Size Effect on Band Structure and Photoluminescence of Semiconductor Nanocrystals. IEEE Nanotechnology Magazine, 2008, 7, 5-9.	1.1	19
455	Multiâ€Field Effect on the Electronic Properties of Silicon Nanowires. ChemPhysChem, 2011, 12, 1302-1309.	1.0	19
456	Band-gap modulation in hydrogenated graphene/boron nitride heterostructures: The role of heterogeneous interface. Physical Review B, 2012, 86, .	1.1	19
457	Gadolinium/DOTA functionalized poly(ethylene glycol)-block-poly(acrylamide-co-acrylonitrile) micelles with synergistically enhanced cellular uptake for cancer theranostics. RSC Advances, 2016, 6, 50534-50542.	1.7	19
458	Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures. Bulletin of Materials Science, 2016, 39, 1295-1302.	0.8	19
459	Nanoporous (Pt _{1â^'x} Fe _x) ₃ Al intermetallic compounds for greatly enhanced oxygen electroreduction catalysis. Journal of Materials Chemistry A, 2016, 4, 18878-18884.	5.2	19
460	MOF-derived LDH wrapped with rGO as an efficient sulfur host for lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2020, 876, 114545.	1.9	19
461	Tetragonal transition metal selenide for hydrogen evolution. Applied Surface Science, 2022, 591, 153249.	3.1	19
462	Surface waves in electrostrictive materials under biasing fields. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 678-700.	0.7	18
463	Surface tension and self-diffusion coefficient of liquid Si and Ge. Journal of Crystal Growth, 2006, 293, 294-298.	0.7	18
464	Interface morphology of nanosized Si embedded in Al matrix. Materials Science and Technology, 2007, 23, 577-581.	0.8	18
465	Mechanical behavior of an electrodeposited nanostructured Cu with a mixture of nanocrystalline grains and nanoscale growth twins in submicrometer grains. Journal of Applied Physics, 2008, 104, 084305.	1.1	18
466	Hydrogen adsorption on Ce/SWCNT systems: a DFT study. Physical Chemistry Chemical Physics, 2011, 13, 9483.	1.3	18
467	Pt monatomic wire supported on graphene nanoribbon for oxygen reduction reaction. RSC Advances, 2014, 4, 28400.	1.7	18
468	Preparation and characterization of a poly(methyl methacrylate) based composite bone cement containing poly(acrylateâ€∢i>co⟨li>â€silane) modified hydroxyapatite nanoparticles. Journal of Applied Polymer Science, 2014, 131, .	1.3	18

#	Article	IF	CITATIONS
469	Poly(\hat{l}^3 -glutamic acid) induced homogeneous mineralization of the poly(ethylene) Tj ETQq1 1 0.784314 rgBT RSC Advances, 2015, 5, 20227-20233.	/Overlock 10 ⁻ 1.7	Tf 50 747 To 18
470	pH and redox dual-responsive multifunctional gene delivery with enhanced capability of transporting DNA into the nucleus. Colloids and Surfaces B: Biointerfaces, 2017, 153, 111-122.	2.5	18
471	Enabling Pyrochlore-Type Oxides as Highly Efficient Electrocatalysts for High-Capacity and Stable Na–O ₂ Batteries: The Synergy of Electronic Structure and Morphology. ACS Catalysis, 2017, 7, 7688-7694.	5.5	18
472	Facile fabrication of porous Ti2Nb10O29 microspheres for high-rate lithium storage applications. International Journal of Hydrogen Energy, 2017, 42, 22965-22972.	3.8	18
473	ZnFe2O4@PPy core-shell structure for high-rate lithium-ion storage. Journal of Electroanalytical Chemistry, 2019, 851, 113442.	1.9	18
474	Electronic and geometric determinants of adsorption: fundamentals and applications. JPhys Energy, 2021, 3, 022001.	2.3	18
475	Synergistic Effect of Active Sites of Doubleâ€Atom Catalysts for Nitrogen Reduction Reaction. ChemSusChem, 2021, 14, 4593-4600.	3.6	18
476	Kauzmann temperature of alloys obtained by different methods. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 1-10.	0.6	17
477	Equations for a piezoelectric parallelepiped and applications in a gyroscope. International Journal of Applied Electromagnetics and Mechanics, 1999, 10, 337-350.	0.3	17
478	Thermodynamic superheating of low-dimensional metals embedded in matrix. Vacuum, 2003, 72, 249-255.	1.6	17
479	Synthesis and field electron emission properties of hybrid carbon nanotubes and nanoparticles. Nanotechnology, 2008, 19, 065710.	1.3	17
480	SIZE-DEPENDENT BAND-GAP AND DIELECTRIC CONSTANT OF SI NANOCRYSTALS. International Journal of Modern Physics B, 2010, 24, 2297-2301.	1.0	17
481	Fabrication and Magnetic Properties of Cobalt Microcrystals. Journal of Physical Chemistry C, 2010, 114, 10691-10696.	1.5	17
482	Synthesis and optical properties of ZnO nanorods on indium tin oxide substrate. Applied Surface Science, 2011, 258, 93-97.	3.1	17
483	The segregation resistance of the Pt _{2ML} /Os/Pd ₃ Al sandwich catalyst for oxygen reduction reaction: a density functional theory study. Physical Chemistry Chemical Physics, 2016, 18, 30174-30182.	1.3	17
484	Formation of arsenene p–n junctions via organic molecular adsorption. Journal of Materials Chemistry C, 2017, 5, 7283-7290.	2.7	17
485	Novel electronic properties of two-dimensional As _x Sb _y alloys studied using DFT. Journal of Materials Chemistry C, 2018, 6, 2854-2861.	2.7	17
486	Long-Term Stability of Perovskite Solar Cells under Different Growth Conditions: A Defect-Controlled Water Diffusion Mechanism. Journal of Physical Chemistry Letters, 2018, 9, 5386-5391.	2.1	17

#	Article	IF	CITATIONS
487	Design heterostructure of NiS–NiS2 on NiFe layered double hydroxide with Mo doping for efficient overall water splitting. Materials Today Energy, 2022, 23, 100906.	2.5	17
488	Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries. Journal of Materials Science and Technology, 2022, 113, 207-216.	5.6	17
489	Electronic Structures and Hydrogen Bond Network of High-Density and Very High-Density Amorphous lces. Journal of Physical Chemistry B, 2005, 109, 19893-19896.	1.2	16
490	Nature of Substitutional Impurity Atom B/N in Zigzag Single-Wall Carbon Nanotubes Revealed by First-Principle Calculations. IEEE Nanotechnology Magazine, 2006, 5, 595-598.	1.1	16
491	Thermodynamic phase stability of three nano-oxides. Materials Research Bulletin, 2008, 43, 3149-3154.	2.7	16
492	Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature. Journal of Applied Physics, 2009, 106, .	1.1	16
493	Fluid-induced frequency shift in a piezoelectric plate driven by lateral electric fields. International Journal of Applied Electromagnetics and Mechanics, 2010, 34, 171-180.	0.3	16
494	Electronic Properties of Nitrogen-Atom-Adsorbed Graphene Nanoribbons With Armchair Edges. IEEE Nanotechnology Magazine, 2010, 9, 243-247.	1.1	16
495	Behaviors of Monomer H ₂ O on the Cu(111) Surface under Surface Charges. Journal of Physical Chemistry C, 2010, 114, 19331-19337.	1.5	16
496	High-speed creep process mediated by rapid dislocation absorption in nanocrystalline Cu. Journal of Applied Physics, 2012, 111, 063506.	1.1	16
497	Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources, 2013, 243, 431-435.	4.0	16
498	Utilisation of janus material for controllable formation of graphene p–n junctions and superlattices. RSC Advances, 2014, 4, 4146-4154.	1.7	16
499	Discriminating between Metallic and Semiconducting Single-Walled Carbon Nanotubes Using Physisorbed Adsorbates: Role of Wavelike Charge-Density Fluctuations. Physical Review Letters, 2016, 117, 246101.	2.9	16
500	Edge or interface effect on bandgap openings in graphene nanostructures: A thermodynamic approach. Coordination Chemistry Reviews, 2016, 326, 1-33.	9.5	16
501	Theoretical Studies on the CO2 Reduction to CH3OH on Cu(211). Electrocatalysis, 2017, 8, 647-656.	1.5	16
502	Rational design of MnCo ₂ O ₄ @NC@MnO ₂ three-layered coreâ€"shell octahedron for high-rate and long-life lithium storage. Dalton Transactions, 2018, 47, 14540-14548.	1.6	16
503	Charge Storage by Electrochemical Reaction of Water Bilayers Absorbed on MoS2 Monolayers. Scientific Reports, 2019, 9, 3980.	1.6	16
504	Thickness-dependent bandgap of transition metal dichalcogenides dominated by interlayer van der Waals interaction. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 109, 11-16.	1.3	16

#	Article	IF	CITATIONS
505	High-loading intrinsic active sites for ammonia synthesis using efficient single-atom catalyst: 2D tungsten-porphyrin sheet. Applied Surface Science, 2020, 529, 147183.	3.1	16
506	An effective scheme to determine surface energy and its relation with adsorption energy. Acta Materialia, 2021, 212, 116895.	3.8	16
507	Sodium storage performance of ultrasmall SnSb nanoparticles. Chemical Engineering Journal, 2021, 420, 129617.	6.6	16
508	Crystallization in amorphous NiZr2, studied by HRTEM. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 133, 346-352.	2.6	15
509	Analysis of a piezoelectric ceramic shell in thickness-shear vibration as a power harvester. International Journal of Applied Electromagnetics and Mechanics, 2006, 24, 25-31.	0.3	15
510	The solid–liquid interface energy of organic crystals. Journal of Physical Organic Chemistry, 2007, 20, 236-240.	0.9	15
511	Oxidation of Graphene Nanoribbon by Molecular Oxygen. IEEE Nanotechnology Magazine, 2008, 7, 628-635.	1.1	15
512	Molecular hydrogen storage in Al-doped bulk graphite with wider layer distances. Solid State Communications, 2009, 149, 1363-1367.	0.9	15
513	First-principles investigation on the field emission properties of B-doped carbon nanotubes. Diamond and Related Materials, 2009, 18, 657-661.	1.8	15
514	Metallic-semiconducting phase transition of the edge-oxygenated armchair graphene nanoribbons. Chemical Physics Letters, 2010, 501, 64-67.	1,2	15
515	Size Effect on Thermal Properties in Low-Dimensional Materials. Key Engineering Materials, 2010, 444, 189-218.	0.4	15
516	Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary. Physical Chemistry Chemical Physics, 2014, 16, 10607.	1.3	15
517	Hierarchical nanoporous intermetallic compounds with self-grown transition-metal hydroxides as bifunctional catalysts for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25925-25931.	5.2	15
518	In-situ synthesis of Co1â^'xS-rGO composite for high-rate lithium-ion storage. Journal of Electroanalytical Chemistry, 2019, 833, 380-386.	1.9	15
519	Electrochemical performance of electrospun lotus–root–structure porous multichannel carbon nanotubes for lithium–sulfur battery applications. Journal of Electroanalytical Chemistry, 2020, 878, 114564.	1.9	15
520	Analysis of a ceramic bimorph piezoelectric gyroscope. International Journal of Applied Electromagnetics and Mechanics, 1999, 10, 459-473.	0.3	14
521	Effect of pressure on melting temperature of silicon. Journal of Physics Condensed Matter, 2003, 15, 4961-4965.	0.7	14
522	Electronic and Field Emission Properties of Carbon Nanocones: A Density Functional Theory Investigation. IEEE Nanotechnology Magazine, 2009, 8, 153-158.	1.1	14

#	Article	IF	CITATIONS
523	Density functional theory study of the electronic and field emission properties of nitrogen- and boron-doped carbon nanocones. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 782-787.	0.9	14
524	Mechanical and electronâ€transport properties of graphene nanoribbons under tensile strain: A firstâ€principles study. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2328-2331.	0.8	14
525	Impact dynamics of water droplets on Cu films with three-level hierarchical structures. Journal of Materials Science, 2014, 49, 3379-3390.	1.7	14
526	Poly(\hat{I}^3 -glutamic acid) modulates the properties of poly(ethylene glycol) hydrogel for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1775-1787.	1.9	14
527	Ethanol Assisted Transfer for Clean Assembly of 2D Building Blocks and Suspended Structures. Advanced Functional Materials, 2019, 29, 1902427.	7.8	14
528	On modeling of extension and flexure response of electroelastic shells under biasing fields. Acta Mechanica, 2002, 156, 163-178.	1.1	13
529	Properties of high strength Al85La10Ni5 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 339, 205-208.	2.6	13
530	Thermodynamic Consideration on Solid Transition of CdSe Nanocrystals Induced by Pressure. Journal of Physical Chemistry B, 2003, 107, 13769-13771.	1.2	13
531	Bulk Nanostructured Cu with High Strength and Good Ductility. Advanced Engineering Materials, 2008, 10, 41-45.	1.6	13
532	Pressure-induced phase transition of CdSe and ZnO nanocrystals. Scripta Materialia, 2008, 59, 526-529.	2.6	13
533	Solvothermal synthesis of Co/CoFe2O4 nanobelts. Materials Letters, 2010, 64, 677-679.	1.3	13
534	Electrical field induced direct-to-indirect bandgap transition in ZnO nanowires. Journal of Applied Physics, 2010, 108, 024302.	1.1	13
535	Distinct Young's modulus of nanostructured materials in comparison with nanocrystals. Physical Chemistry Chemical Physics, 2011, 13, 21328.	1.3	13
536	Effect of Lanthanum on Grain Refinement of Casting Aluminum-Copper Alloy. International Journal of Metalcasting, 2013, 7, 49-54.	1.5	13
537	Towards single-gate field effect transistor utilizing dual-doped bilayer graphene. Carbon, 2014, 77, 431-441.	5.4	13
538	Generation of a co-culture cell micropattern model to simulate lung cancer bone metastasis for anti-cancer drug evaluation. RSC Advances, 2017, 7, 21837-21847.	1.7	13
539	Different effects of water molecules on CO oxidation with different reaction mechanisms. Physical Chemistry Chemical Physics, 2018, 20, 8341-8348.	1.3	13
540	ZnFe2O4/MoS2/rGO composite as an anode for rechargeable Lithium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 823, 407-415.	1.9	13

#	Article	IF	CITATIONS
541	The Activity Improvement of the TM3(hexaiminotriphenylene)2 Monolayer for Oxygen Reduction Electrocatalysis: A Density Functional Theory Study. Frontiers in Chemistry, 2018, 6, 351.	1.8	13
542	Non-noble-metal bismuth nanoparticle-decorated bismuth vanadate nanoarray photoanode for efficient water splitting. Materials Chemistry Frontiers, 2018, 2, 1799-1804.	3.2	13
543	Invigorating the catalytic performance of CoP through interfacial engineering by Ni ₂ P precipitation. Journal of Materials Chemistry A, 2019, 7, 26177-26186.	5.2	13
544	3D flower-Like Co1â^xs/MoS2 composite for long-life and high-rate lithium storage. Journal of Energy Storage, 2020, 27, 101135.	3.9	13
545	W-N3 center supported on blue phosphorus as a promising efficient electrocatalyst with ultra-low limiting potential for nitrogen fixation. Applied Surface Science, 2021, 536, 147706.	3.1	13
546	Well-dispersive Pt nanoparticles grown on 3D nitrogen- and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation. Materials Today Energy, 2021, 21, 100814.	2.5	13
547	Snâ€, Sbâ€, and Biâ€Based Anodes for Potassium Ion Battery. Chemical Record, 2022, 22, .	2.9	13
548	Specific heat investigation of the glass transition and crystallization of amorphous NiZr2 using low heating rates. Journal of Non-Crystalline Solids, 1990, 117-118, 911-914.	1.5	12
549	Cp measurements around the martensitic transformation temperature of a CuAlNi alloy. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 196, 165-169.	2.6	12
550	Two limits of melting temperatures of nanocrystals. Journal of Materials Science, 1999, 34, 5919-5922.	1.7	12
551	Finite size effect on critical transition temperature of superconductive nanosolids. Solid State Communications, 2005, 134, 797-801.	0.9	12
552	Formation of a Multiphase Gradient Structure in a Zr–Cu–Ni–Al–O Alloy. Advanced Engineering Materials, 2008, 10, 384-388.	1.6	12
553	Theoretical investigation on different effects of nitrogen and boron substitutional impurities on the structures and field emission properties for carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 890-893.	1.3	12
554	Size effect on evaporation temperature of nanocrystals. Materials Chemistry and Physics, 2008, 111, 293-295.	2.0	12
555	Electronic properties of dehydrogenated nanodiamonds: A first-principles study. Diamond and Related Materials, 2008, 17, 204-208.	1.8	12
556	Size-Dependent Deformation and Adsorption Behavior of Carbon Monoxide, Hydrogen, and Carbon on Pyramidal Copper Clusters. Journal of Physical Chemistry C, 2008, 112, 7672-7677.	1.5	12
557	Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review. Frontiers of Physics, 2011, 6, 162-176.	2.4	12
558	Role of carbon in the formation of hard Ge1â^'xCx thin films by reactive magnetron sputtering. Physica B: Condensed Matter, 2011, 406, 2658-2662.	1.3	12

#	Article	IF	CITATIONS
559	Superhydrophobic Behavior and Optical Properties of ZnO Film Fabricated by Hydrothermal Method. Journal of Materials Science and Technology, 2012, 28, 103-108.	5. 6	12
560	Improvement of electromigration reliability and diffusion of Cu films using coherent Cu(111)/Cr2O3(0001) interfaces. Chemical Physics Letters, 2012, 542, 85-88.	1.2	12
561	Density functional theory calculations of adsorption of hydrogen fluoride on titanium embedded graphene. Thin Solid Films, 2013, 546, 124-127.	0.8	12
562	Disordered ZnO nanoparticles with extremely intense deep-level emission and enhanced photocatalytic activity. Applied Surface Science, 2014, 313, 888-895.	3.1	12
563	DFT study of CO oxidation on Cu ₂ O–Au interfaces at Au–Cu alloy surfaces. RSC Advances, 2015, 5, 1587-1597.	1.7	12
564	Nanostructured Co _x Ni _{1â^'x} bimetallic alloys for high efficient and ultrafast adsorption: experiments and first-principles calculations. RSC Advances, 2016, 6, 9209-9220.	1.7	12
565	The microtubule-associated protein EML3 regulates mitotic spindle assembly by recruiting the Augmin complex to spindle microtubules. Journal of Biological Chemistry, 2019, 294, 5643-5656.	1.6	12
566	Giant Rashba splitting in one-dimensional atomic tellurium chains. Nanoscale, 2020, 12, 10277-10283.	2.8	12
567	Synchronous bi-modulation by nanoclusters and single atoms for high-efficient oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 446, 137441.	6.6	12
568	Thermal stability of low dimensional crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 139-143.	2.6	11
569	One-dimensional equations for a piezoelectric ring and applications in a gyroscope. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 1275-1282.	1.7	11
570	Wear behavior of Al90Mn8Ce2 alloy prepared by powder metallurgy. Materials & Design, 2004, 25, 495-498.	5.1	11
571	Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films. Thin Solid Films, 2006, 497, 333-337.	0.8	11
572	Temperature and size effects on the amplitude of atomic vibration of Co nanocrystals embedded in Ag matrix. Chemical Physics Letters, 2007, 439, 102-104.	1.2	11
573	Pathways for the Non Oâ€Involved Oxidation of Methanol on Pt(111). ChemPhysChem, 2008, 9, 2092-2098.	1.0	11
574	Tensile-relaxation behavior of electrodeposited nanocrystalline Ni. Journal of Applied Physics, 2010, 108, 054319.	1.1	11
575	Optical and Electronic Properties of Wurtzite Structure Zn _{1â°' <i>x</i>} Mg _{<i>x</i>} O Alloys. Chinese Physics Letters, 2011, 28, 117101.	1.3	11
576	Stability, electronic and magnetic properties of embedded triangular graphene nanoflakes. Physical Chemistry Chemical Physics, 2012, 14, 1253-1261.	1.3	11

#	Article	IF	Citations
577	Effect of oxygen vacancies on electronic structures and field emission properties of TiO ₂ nanotubes: A density-functional theory investigation. Applied Physics Letters, 2013, 103, 023111.	1.5	11
578	Facile Synthesis of Ni $<$ sub $>$ $<$ i $>$ x $<$ /i $>$ $<$ /sub $>$ Zn $<$ sub $>$ 1 \hat{a} 2 $<$ i $>$ x $<$ /i $>$ $<$ /sub $>$ Fe $<$ sub $>$ 2 $<$ /sub $>$ O $<$ sub $>$ 4 $<$ /sub $>$ ($<$ i $>$ x $<$ /i $>$ =0, 0.25, 0.5, 0.75, 1) as Anode Materials for Lithium Storage. ChemPlusChem, 2016, 81, 1174-1181.	1.3	11
579	Incorporation of well-dispersed calcium phosphate nanoparticles into PLGA electrospun nanofibers to enhance the osteogenic induction potential. RSC Advances, 2017, 7, 23982-23993.	1.7	11
580	Nanoporous (Pt1-Co)3Al intermetallic compound as a high-performance catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 19947-19954.	3.8	11
581	Hollow N-doped carbon nanofibers provide superior potassium-storage performance. Nanoscale Advances, 2020, 2, 4187-4198.	2.2	11
582	Scheme for Screening O ₂ Reduction Electrocatalysts: From Pure Metals and Alloys to Single-Atom Catalysts. Journal of Physical Chemistry C, 2020, 124, 25412-25420.	1.5	11
583	Composites of Reduced Graphene Oxide and Fe ₂ O ₃ Nanoparticles Anchored on MoS ₂ Nanosheets for Lithium Storage. ACS Applied Nano Materials, 2020, 3, 9009-9015.	2.4	11
584	Mo decoration on graphene edge for nitrogen fixation: A computational investigation. Applied Surface Science, 2021, 568, 150867.	3.1	11
585	Supported ultrafine NiPt–MoO _{<i>x</i>} nanocomposites as highly efficient catalysts for complete dehydrogenation of hydrazine borane. Journal of Materials Chemistry A, 2021, 9, 26704-26708.	5.2	11
586	Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. Journal of Materials Science and Technology, 2022, 120, 159-166.	5.6	11
587	Size effect on the freezing temperature of lead particles. Journal of Materials Science Letters, 2000, 19, 1893-1895.	0.5	10
588	Superheating thermodynamics of nanocrystals based on the interface effect. Physica B: Condensed Matter, 2002, 322, 188-192.	1.3	10
589	Mechanical Properties of a High-Strength Al90Mn8Ce2 Alloy. Advanced Engineering Materials, 2003, 5, 119-122.	1.6	10
590	Spatial dispersion of short surface acoustic waves in piezoelectric ceramics. Acta Mechanica, 2005, 180, 11-20.	1.1	10
591	Synthesis and characteristics of large-scale ZnO rods by wet chemical method. Transactions of Nonferrous Metals Society of China, 2008, 18, 1089-1093.	1.7	10
592	Thermodynamic Considerations on Solid Structural Transition Temperatures of Nanocrystals. Journal of Computational and Theoretical Nanoscience, 2008, 5, 2346-2364.	0.4	10
593	Characteristics of lithium iron phosphate mixed with nano-sized acetylene black for rechargeable lithium-ion batteries. Journal of Applied Electrochemistry, 2011, 41, 99-106.	1.5	10
594	Highly Transparent and Conductive Zn0.86Cd0.11In0.03O Thin Film Prepared by Pulsed Laser Deposition. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1627-1632.	0.8	10

#	Article	IF	CITATIONS
595	High thermal stability of core–shell structures dominated by negative interface energy. Physical Chemistry Chemical Physics, 2017, 19, 9253-9260.	1.3	10
596	Facile Fabrication of ZnFe ₂ O ₄ â€MWCNTs Composite as an Anode Material for Rechargeable Lithiumâ€lon Batteries. ChemistrySelect, 2017, 2, 7194-7201.	0.7	10
597	Effective scheme to determine accurate defect formation energies and charge transition levels of point defects in semiconductors. Physical Review B, 2017, 96, .	1.1	10
598	Three-dimensional Ni/MnO2 nanocylinder array with high capacitance for supercapacitors. Results in Physics, 2019, 12, 1411-1416.	2.0	10
599	A layered porous Ni structure contributes to superior low-temperature performance of hydrogen storage alloys. International Journal of Hydrogen Energy, 2020, 45, 2157-2167.	3 . 8	10
600	Thermodynamics of formation of carbon nanotubes catalyzed by nickel. Applied Surface Science, 1999, 152, 156-160.	3.1	9
601	The critical thickness of liners of Cu interconnects. Journal Physics D: Applied Physics, 2004, 37, 102-106.	1.3	9
602	Characterization of Langmuirâ^'Blodgett Films of a Ferroelectric Liquid Crystal. Journal of Physical Chemistry B, 2006, 110, 1722-1726.	1.2	9
603	Size and interface effects on several kinetic and thermodynamic properties of polymer thin films. Thin Solid Films, 2006, 515, 2765-2770.	0.8	9
604	Nature of Solidification of Nanoconfined Organic Liquid Layers. Langmuir, 2007, 23, 1000-1003.	1.6	9
605	Electronic structures and hydrogen bond network of ambient water and amorphous ices. Chemical Physics Letters, 2007, 437, 45-49.	1.2	9
606	Synthesis of nickel submicrocrystals by solvothermal method: Using different types of alkali. Materials Letters, 2010, 64, 215-218.	1.3	9
607	Tunable UV Absorption and Mobility of Yttrium-Doped ZnO using First-Principles Calculations. Chinese Physics Letters, 2012, 29, 117101.	1.3	9
608	Stable ductility of an electrodeposited nanocrystalline Niâ€"20wt.%Fe alloy in tensile plastic deformation. Journal of Alloys and Compounds, 2013, 553, 99-105.	2.8	9
609	Identification of a potential superhard compound ReCN. Journal of Alloys and Compounds, 2015, 631, 321-327.	2.8	9
610	Elecreoreduction of CO2 to formic acid on Cu: Role of water bilayer in modeling electrochemical interface. Applied Catalysis A: General, 2017, 547, 214-218.	2.2	9
611	Density functional theory calculations for armchair stanene nanoribbons with fluorine and sulfur functionalization. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101, 71-77.	1.3	9
612	Effect of the interface energy on the pressure-induced superheating of metallic nanoparticles embedded in a matrix. Scripta Materialia, 2018, 142, 23-27.	2.6	9

#	Article	IF	Citations
613	Recent advances of nanoporous metal-based catalyst: synthesis, application and perspectives. Journal of Iron and Steel Research International, 2019, 26, 779-795.	1.4	9
614	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	4.7	9
615	Rice-shaped Fe2O3@C@Mn3O4 with three-layer core-shell structure as a high-performance anode for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 861, 113942.	1.9	9
616	Effective scheme for understanding rolling and sliding at nanoscale. Carbon, 2020, 161, 269-276.	5.4	9
617	Sulfur-Modified Carbon-Coated CoMoO ₃ Nanohybrid Electrodes for Enhanced Lithium-Storage Capacity. ACS Applied Nano Materials, 2020, 3, 1808-1820.	2.4	9
618	Tuning the electronic structure of NiCoVO _{<i>x</i>} nanosheets through S doping for enhanced oxygen evolution. Nanoscale, 2021, 13, 17022-17027.	2.8	9
619	CoMoO3 Nanoplate/Reduced Graphene Oxide Composites Decorated with Ag Nanoparticles for Electrocatalytic Water Oxidation. ACS Applied Nano Materials, 2021, 4, 5383-5393.	2.4	9
620	Efficient Electrocatalytic Nitrogen Reduction to Ammonia on Ultrafine Sn Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59834-59842.	4.0	9
621	Grain-boundary enthalpy of nanocrystalline materials crystallized from the amorphous state. Physical Review B, 1997, 56, 5885-5889.	1.1	8
622	INTRINSIC SURFACE AND INTERFACE STRESS OF LOW-DIMENSIONAL CRYSTALS. International Journal of Modern Physics B, 2002, 16, 64-70.	1.0	8
623	Comparison of Shape Memory Effect Between Casting and Forged Alloys of Fe14Mn6Si9Cr5Ni. Journal of Materials Engineering and Performance, 2002, 11, 313-316.	1.2	8
624	Hypereutectic Al-Si Binary Alloys Prepared by Melt Spinning Method. Advanced Engineering Materials, 2004, 6, 303-306.	1.6	8
625	Molecular dynamics study of carbon nanotube oscillator on gold surface. Molecular Simulation, 2006, 32, 363-368.	0.9	8
626	Recent Patents on Cu/low-k Dielectrics Interconnects in Integrated Circuits. Recent Patents on Nanotechnology, 2007, 1 , $193-209$.	0.7	8
627	Size-dependent structural stability of ZnO nanowires and single-walled nanotubes. Chemical Physics Letters, 2008, 465, 78-81.	1.2	8
628	Theoretical investigation of atomic-scale (001) twinned martensite in the NiTi alloy. Materials Letters, 2008, 62, 964-966.	1.3	8
629	Density Functional Theory Study on Electric Field Induced Structure Variations, Binding and Catalytic Properties in Several Low-Dimensional Systems. Journal of Computational and Theoretical Nanoscience, 2010, 7, 2225-2261.	0.4	8
630	Frequency shifts in a quartz plate piezoelectric resonator in contact with a viscous fluid under a separated electrode. International Journal of Applied Electromagnetics and Mechanics, 2011, 35, 177-187.	0.3	8

#	Article	IF	Citations
631	The deformation and fracture behavior of an electrodeposited nanocrystalline Ni under compression. Materials Science & Define Processing, 2011, 528, 7878-7886.	2.6	8
632	Copper Metallization for Current Very Large Scale Integration. Recent Patents on Nanotechnology, 2011, 5, 106-137.	0.7	8
633	Stability of indium–tin-oxide and its optical properties: A first-principles study. Journal of Physics and Chemistry of Solids, 2013, 74, 446-451.	1.9	8
634	Lithium Storage in Carbonâ€coated Zinc Iron Oxides as Anode Materials for Lithiumâ€lon Batteries. Energy Technology, 2017, 5, 611-615.	1.8	8
635	Thickness-dependent surface energies of few-layered arsenene and antimonene films in \hat{l}^2 phases. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101, 38-43.	1.3	8
636	Construction of Ni ₃ S ₂ -Ni _x P _y /NF@NiFe LDH with heterogeneous interface to accelerate catalytic kinetics of overall water splitting. Materials Research Letters, 2022, 10, 762-770.	4.1	8
637	Effect of alloying elements on stacking fault energy of iron-base shape memory alloys. Journal of Materials Science Letters, 1999, 18, 1669-1670.	0.5	7
638	Precipitation behavior of as-quenched Al60Si40 alloy. Journal of Materials Science Letters, 2003, 22, 1355-1357.	0.5	7
639	Formation of monoatomic chains of metallic elements. Applied Surface Science, 2003, 206, 331-335.	3.1	7
640	The critical layer number of epitaxially grown Cu and Ni films with strained structure. Applied Surface Science, 2005, 239, 259-261.	3.1	7
641	Liquid nucleation of surface-free crystal from nanovoids. Solid State Communications, 2008, 147, 250-253.	0.9	7
642	On the interaction between the harvesting structure and the storage circuit of a piezoelectric energy harvester. International Journal of Applied Electromagnetics and Mechanics, 2008, 27, 297-309.	0.3	7
643	Improving Levine model for dielectric constants of transition metal compounds. Journal of Applied Physics, 2009, 106, 094102.	1.1	7
644	First-principles density-functional investigation on the electronic properties and field emission of a hydrogenated nanodiamond. Diamond and Related Materials, 2009, 18, 1310-1315.	1.8	7
645	Revisiting the Phillips ionicity of conductors and the quantitative determination of the hardness of carbides and nitrides of transition metals using the LDAÂÂU technique. Solid State Communications, 2010, 150, 1818-1821.	0.9	7
646	Optical and Electrical Properties of ZnO/CdO Composite Thin Films Prepared by Pulse Laser Deposition. Chinese Physics Letters, 2011, 28, 016801.	1.3	7
647	Dislocation-mediated creep process in nanocrystalline Cu. Chinese Physics B, 2013, 22, 037303.	0.7	7
648	Transformation of electronic properties and structural phase transition from HfN to Hf ₃ N ₄ . Journal of Physics Condensed Matter, 2015, 27, 225501.	0.7	7

#	Article	IF	Citations
649	A novel bubble nucleation particle for magnesium composite foam. Materials Letters, 2017, 193, 187-190.	1.3	7
650	Effects of temperature and fatigue on the metabolism and swimming capacity of juvenile Chinese sturgeon (Acipenser sinensis). Fish Physiology and Biochemistry, 2017, 43, 1279-1287.	0.9	7
651	Size Effects on Cohesive Energy, Debye Temperature and Lattice Heat Capacity from First-Principles Calculations of Sn Nanoparticles. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2018, 88, 629-632.	0.8	7
652	Geometric and electronic structure of multilayered graphene: synergy of the nondirective ripples and the number of layers. Physical Chemistry Chemical Physics, 2018, 20, 2230-2237.	1.3	7
653	Electronic and optical properties of bilayer SnS with different stacking orders: A first principles study. Journal of Applied Physics, 2018, 124, .	1.1	7
654	CO adsorption on metal doped 2D InSe: Mechanism and application. Progress in Natural Science: Materials International, 2019, 29, 305-309.	1.8	7
655	Favored decomposition paths of hydrogen sulfide at high pressure. New Journal of Physics, 2019, 21, 033023.	1.2	7
656	Monolayer tellurenyne assembled with helical telluryne: structure and transport properties. Nanoscale, 2019, 11, 4053-4060.	2.8	7
657	A self-supporting bifunctional catalyst electrode made of amorphous and porous CoP3 nanoneedle array: exhaling during overall water splitting. Electrochimica Acta, 2021, 393, 138986.	2.6	7
658	Intermetallic Cu ₁₁ In ₉ <i>i>in situ</i> formed on hierarchical nanoporous Cu for highly selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 4333-4343.	5.2	7
659	Microobservation of stress induced martensitic transformation in CuAlNi single crystals. Acta Metallurgica Et Materialia, 1992, 40, 607-613.	1.9	6
660	Characterization of electroelastic beams under biasing fields with applications in buckling analysis. Archive of Applied Mechanics, 2002, 72, 439-450.	1.2	6
661	Alignment of amorphous carbon nanotubes with graphitized branches grown by radio frequency plasma-enhanced chemical vapor deposition. Carbon, 2007, 45, 681-684.	5.4	6
662	Investigation on Nanodiamond and Carbon Nanotubeâ€Diamond Nanocomposite Synthesized using RFâ€PECVD. Chemical Vapor Deposition, 2008, 14, 236-240.	1.4	6
663	Dependence of Thermal Stability of Antiferromagnetic Nanocrystals on Size and Magnetic Proximity Effect. Journal of Physical Chemistry C, 2008, 112, 4055-4060.	1.5	6
664	The grain refinement mechanism of electrodeposited copper. Journal of Materials Research, 2009, 24, 3226-3236.	1.2	6
665	Tunable optical and electronic properties of Si nanowires by electric bias. Journal of Applied Physics, 2011, 109, 083106.	1.1	6
666	Toward Tandem Photovoltaic Devices Employing Nanoarray Graphene-Based Sheets. Journal of Physical Chemistry C, 2014, 118, 2385-2390.	1.5	6

#	Article	IF	Citations
667	Role of Edge Geometry and Magnetic Interaction in Opening Bandgap of Lowâ€Dimensional Graphene. ChemPhysChem, 2014, 15, 958-965.	1.0	6
668	Construction of Silver Nanoparticle-Loaded Micelles <i>Via </i> Coordinate Interaction and Their Antibacterial Activity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 848-856.	1.8	6
669	Enhanced Sodium-Ion Mobility and Electronic Transport of Hydrogen-Incorporated V ₂ O ₅ Electrode Materials. Journal of Physical Chemistry C, 2017, 121, 5974-5982.	1.5	6
670	Evolution of Water Structures on Stepped Platinum Surfaces. Journal of Physical Chemistry C, 2018, 122, 604-611.	1.5	6
671	Facile Synthesis of Flowerâ€Like MnCo 2 O 4 @PANiâ€rGO: A Highâ€Performance Anode Material for Lithiumâ€lon Batteries. ChemPlusChem, 2019, 84, 1596-1603.	1.3	6
672	Molecular Switch by Adsorbing the Au ₆ Cluster on Single-Walled Carbon Nanotubes: Role of Many-Body Effects of vdW Forces. Journal of Physical Chemistry C, 2019, 123, 9217-9222.	1.5	6
673	Nonlocal Electronic Correlations in the Cohesive Properties of High-Pressure Hydrogen Solids. Journal of Physical Chemistry Letters, 2020, 11, 1521-1527.	2.1	6
674	Steric Hindrance―and Work Functionâ€Promoted High Performance for Electrochemical CO Methanation on Antisite Defects of MoS 2 and WS 2. ChemSusChem, 2021, 14, 2255-2261.	3.6	6
675	Os ₁ B ₁₁ N ₁₂ /C ₂ N as an Efficient Electrocatalyst for Nitrogen Reduction Reaction. ChemSusChem, 2022, 15, e202102648.	3.6	6
676	Composition design of iron-base shape memory alloys. Journal of Materials Science Letters, 1999, 18, 857-858.	0.5	5
677	Bulk high hardness Al90Ce2Mn8alloy prepared by powder metallurgy. Powder Metallurgy, 2002, 45, 80-82.	0.9	5
678	Bulk high strength Al85La10Ni5 alloy prepared by hot pressing. Materials Research Bulletin, 2002, 37, 297-304.	2.7	5
679	Surface melting of polycrystals Pb and In within 1 K below melting temperature. Materials Letters, 2003, 57, 2515-2518.	1.3	5
680	Crystal–liquid interface energy and surface stress of alkali halides. Materials Chemistry and Physics, 2004, 87, 1-4.	2.0	5
681	Reverse Hall-Petch Relationship of Metals in Nanometer Size., 0, , .		5
682	Dual-phase nanocrystalline Ni–Co alloy with high strength and enhanced ductility. Journal of Materials Research, 2010, 25, 401-405.	1.2	5
683	Surface Energy and Site Dependent Cohesive Energy of Ag Clusters. Current Nanoscience, 2011, 7, 463-470.	0.7	5
684	Effects of surface modifications on band gaps and electronic states of GaN/InN core/shell nanowires. Chemical Physics Letters, 2011, 512, 251-254.	1.2	5

#	Article	IF	Citations
685	Self-formation of nanocomposite Cu/Al2O3 thin films on CuAl dilute alloys by annealing in inert atmospheres. Journal of Applied Physics, 2011, 110, 023525.	1.1	5
686	Size effect on surface tension of liquid binary alloy droplets. Solid State Communications, 2012, 152, 573-576.	0.9	5
687	A comparable study of structural and electrical transport properties of Al and Cu nanowires using first-principle calculations. Applied Physics Letters, 2013, 103, .	1.5	5
688	Design Principles of Inert Substrates for Exploiting Gold Clusters' Intrinsic Catalytic Reactivity. Scientific Reports, 2015, 5, 15095.	1.6	5
689	Enhancing the brightness and saturation of noniridescent structural colors by optimizing the grain size. Nanoscale Advances, 2020, 2, 4581-4590.	2.2	5
690	Eggshell-like MoS ₂ Nanostructures with Negative Curvature and Stepped Faces for Efficient Hydrogen Evolution Reactions. ACS Applied Nano Materials, 2021, 4, 14086-14093.	2.4	5
691	Temperature-dependent corrosion resistance of several alloys in alkali industrial environment. Materials and Corrosion - Werkstoffe Und Korrosion, 2002, 53, 269-273.	0.8	4
692	Single crystallization of Pb in carbon nanotubes. Applied Surface Science, 2002, 195, 38-41.	3.1	4
693	Effect of Sintering Temperature on the Room Temperature Properties of Al ₉₀ Mn ₈ Ce ₂ Alloy. Journal of Materials Engineering and Performance, 2002, 11, 262-264.	1.2	4
694	Analysis of 2D piezoelectric strips and semi-strips. Zeitschrift Fur Angewandte Mathematik Und Physik, 2003, 54, 149-159.	0.7	4
695	Effect of Pressure on Melting Temperature of Silicon and Germanium. Materials Science Forum, 2005, 475-479, 1893-1896.	0.3	4
696	Glass Transition of Low-Density Amorphous Water and Related Structures. Journal of Physical Chemistry B, 2007, 111, 11177-11180.	1.2	4
697	Size dependence of phase transition temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Frontiers of Physics in China, 2007, 2, 289-311.	1.0	4
698	Electroless Ni-P deposition on magnesium alloy from a sulfate bath. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 60-64.	0.4	4
699	Electronic properties of single-molecule junction: Effect of the molecular distortion. Applied Surface Science, 2009, 255, 9259-9263.	3.1	4
700	Visible light photocatalysis of single-walled (Zn4/6Cu2/6O)3/(Zn5/6Cu1/6O)3 superlattice nanotube for redox reaction of water calculated by generalized gradient approximations with the Hubbard U model. Journal of Applied Physics, 2012, 111, 034318.	1.1	4
701	Micro-twins TiO2 nanorods grown on seeded ZnO film. Journal of Crystal Growth, 2012, 344, 1-5.	0.7	4
702	Enhanced doping efficiency of the remotely p-doped InAs/InP core-shell nanowires: A first principles study. Solid State Communications, 2012, 152, 2120-2122.	0.9	4

#	Article	IF	Citations
703	Effects of Mass Layer Stiffness and Imperfect Bonding on a Quartz Crystal Microbalance. IEEE Sensors Journal, 2013, 13, 574-580.	2.4	4
704	Residual stress induced wetting variation on electric brush-plated Cu film. Chinese Physics B, 2014, 23, 038201.	0.7	4
705	In situ transformation of casein/CaCO3 microspheres into hierarchical hydroxyapatite composite microparticles and its cytocompatibility evaluation. Journal of Materials Science, 2016, 51, 6836-6849.	1.7	4
706	A criterion for the glass-forming ability of binary bulk metallic glasses. Journal of Non-Crystalline Solids, 2017, 471, 264-267.	1.5	4
707	Interface effect on the cohesive energy of nanostructured materials and substrate-supported nanofilms. Dalton Transactions, 2018, 47, 4856-4865.	1.6	4
708	Distinguishing the Structures of High-Pressure Hydrides with Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 9439-9445.	2.1	4
709	Composition- and layer-dependent bandgap of two-dimensional transition metal dichalcogenides alloys. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114243.	1.3	4
710	Insights into oxygen activation on metal clusters for catalyst design. Journal of Materials Chemistry A, 2021, 9, 11726-11733.	5.2	4
711	Wave propagation in electrostrictive materials under biasing fields. , 0, , .		3
712	Glass transition of organic nanoparticles. Materials Letters, 2000, 44, 261-264.	1.3	3
713	Crystallization kinetics of Al82La9Ni9 amorphous alloy. Journal of Materials Science Letters, 2001, 20, 1679-1680.	0.5	3
714	Grain size limit of nanocrystalline materials obtained by annealing glasses. Journal of Physics Condensed Matter, 2001, 13, 5503-5506.	0.7	3
715	Single crystallization of Al interconnection wires. Semiconductor Science and Technology, 2002, 17, 1108-1110.	1.0	3
716	Cast Pipe Joints of Fe-15Mn-5Si-8Cr-5Ni-0.25C Shape Memory Alloy with High Carbon Content. Materialwissenschaft Und Werkstofftechnik, 2003, 34, 756-759.	0.5	3
717	Modeling of melting enthalpy of organic nanowires. Physica Status Solidi (B): Basic Research, 2003, 236, 583-588.	0.7	3
718	MODELING OF SURFACE STRESS OF SEMICONDUCTORS. Surface Review and Letters, 2003, 10, 49-53.	0.5	3
719	Mixing Entropy Difference between Liquid and Crystal of Zr Base Amorphous Alloys. Advanced Engineering Materials, 2005, 7, 512-517.	1.6	3
720	Size Effect on the Bandgap of Semiconductor Nanocrystals. Solid State Phenomena, 2007, 121-123, 1069-1072.	0.3	3

#	Article	IF	CITATIONS
721	<i>AB INITIO</i> STUDY OF NITROGEN-DOPED CARBON NANOTUBES. Nano, 2007, 02, 181-188.	0.5	3
722	Effect of Nanoâ€Scale Precipitates Growth on the Deformation Behavior of the Cast Coarseâ€Grained Alâ€Cu Alloy. Advanced Engineering Materials, 2008, 10, 1114-1116.	1.6	3
723	Lindemann-like size-independent glass-transition criterion for polymers. Polymer, 2008, 49, 3578-3581.	1.8	3
724	Thickness-dependent crystallization behavior of fast-growth phase-change amorphous films. Physica B: Condensed Matter, 2008, 403, 616-618.	1.3	3
725	Intrinsic and external strains modulated electronic properties of GaN/InN core/shell nanowires. Journal of Applied Physics, 2011, 110, .	1.1	3
726	First-principles study of optical properties in Ca-doped ZnO alloys. Open Physics, 2012, 10, .	0.8	3
727	High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold. Journal of Applied Physics, 2014, 116, 103518.	1.1	3
728	Gap openings in graphene regarding interfacial interaction from substrates. Physical Chemistry Chemical Physics, 2014, 16, 5600.	1.3	3
729	Casein phosphopeptides-vaterite calcium carbonate enhance cytocompatibility and osteoinductivity of poly(I -lactic acid). Polymer Composites, 2015, 36, 1213-1223.	2.3	3
730	Pressure evolution of the potential barriers for transformations of layered BN to dense structures. RSC Advances, 2015, 5, 87550-87555.	1.7	3
731	Local Geometric Effects on Stability and Energy Gap of Thiolateâ€Protected Gold Nanoparticles. ChemPhysChem, 2016, 17, 2998-3003.	1.0	3
732	Adsorption behavior of gas molecules on hydrogenated Fe(1†1†1). Computational Materials Science, 2018, 146, 261-267.	1.4	3
733	Distinguishing the Structure of High-Pressure Hydrogen with Dielectric Constants. Journal of Physical Chemistry Letters, 2020, 11, 664-669.	2.1	3
734	Hydrangea-like microspheres as anodes toward long-life and high-capacity lithium storage. Journal of Materials Science, 2020, 55, 12151-12164.	1.7	3
735	Boosting Production of HCOOH from CO 2 Electroreduction via Bi/CeO x. Angewandte Chemie, 2021, 133, 8880-8884.	1.6	3
736	A universal picture for ejecting atoms on metallics. Acta Materialia, 2022, 228, 117792.	3.8	3
737	Microstructure Evolution of Amorphous Si1-xGex Thin Films. Materials Research Society Symposia Proceedings, 1997, 472, 397.	0.1	2
738	Gyroscopic effect on surface waves in piezoelectrics. , 1999, , .		2

#	Article	IF	CITATIONS
739	Creep behavior and calorimetric measurement of iron-based shape memory alloy. Journal of Materials Science Letters, 2000, 19, 389-391.	0.5	2
740	Two-dimensional equations for electroelastic plates under biasing fields. , 0, , .		2
741	Effect of pressing temperatures on strength of Al85La1 ONi5alloys. Materials Science and Technology, 2002, 18, 1241-1243.	0.8	2
742	Thermal stability of cluster arrays of group III elements on Si(111) surface. Applied Surface Science, 2004, 226, 327-330.	3.1	2
743	Modelling the surface stress of alkali halides. Philosophical Magazine Letters, 2004, 84, 63-68.	0.5	2
744	Forming abilities of monatomic chains of several fcc and bcc metals in different crystallographic orientations. Applied Surface Science, 2005, 252, 1780-1784.	3.1	2
745	Reconstruction possibility of fcc (111) metallic surfaces at room temperature. Materials Letters, 2005, 59, 1907-1909.	1.3	2
746	Size Effect on Glass Transition Temperature of Nanopolymers. Solid State Phenomena, 2007, 121-123, 1317-1320.	0.3	2
747	Thickness dependent stripe structure stability of Ag films on Si(1 1 1)–(4 × 1)–In substrate. Applied Surface Science, 2007, 253, 3586-3588.	3.1	2
748	The effects of Si3N4 interlayer on the thermal stability and hardness of Ti/TiNx (x=0.5–1) nanolayered coatings. Applied Surface Science, 2007, 253, 7238-7241.	3.1	2
749	Failure analysis of some petrochemical plant components. Corrosion Engineering Science and Technology, 2010, 45, 461-467.	0.7	2
750	Physical Insight Into Substitutional N-Doped Graphene Nanoribbons With Armchair Edges. IEEE Nanotechnology Magazine, 2011, 10, 926-930.	1.1	2
751	Fundamentals of Thermodynamics. , 2011, , 1-35.		2
752	Resonance frequency distribution of cantilevered (5,5)(10,10) double-walled carbon nanotube with different intertube lengths. Molecular Simulation, 2011, 37, 18-22.	0.9	2
753	Tuning electronic and magnetic properties of partially hydrogenated graphene by biaxial tensile strain: a computational study. Nanoscale Research Letters, 2014, 9, 491.	3.1	2
754	Factors to determine the pressure change tendencies in pressure-induced phase transition of semiconductor nanocrystals. Materials Chemistry and Physics, 2014, 147, 95-98.	2.0	2
755	Morse function for nanoscaled cubic metals. Materials Chemistry and Physics, 2014, 145, 51-55.	2.0	2
756	Cohesiveâ€Energyâ€Resolved Bandgap of Nanoscale Graphene Derivatives. ChemPhysChem, 2014, 15, 2563-2568.	1.0	2

#	Article	IF	Citations
757	3D Hierarchical Ni/NiCo2O4 Core-Shell Nanotube Arrays with High Capacitance and Stable Cycling Performance for Supercapacitor. Current Nanoscience, 2017, 14, 26-32.	0.7	2
758	Strain engineering of the electronic and transport properties of monolayer tellurenyne. Physical Chemistry Chemical Physics, 2019, 21, 23119-23128.	1.3	2
759	Effects of atomic species and interatomic distance on the interactions in one-dimensional nanomaterials. Physical Chemistry Chemical Physics, 2019, 21, 25889-25895.	1.3	2
760	CoMoO4/rGO hybrid structure embellished with Cu nanoparticles: An electrocatalyst rich in oxygen vacancies towards enhanced oxygen evolution reaction. Materials Letters, 2021, 293, 129741.	1.3	2
761	Effects of surface and grain boundary on temperature-pressure nano-phase diagrams of nanostructured carbon. Scripta Materialia, 2022, 207, 114267.	2.6	2
762	Zn-Al Eutectoid Nanocrystals Produced by Alloying. Journal of Materials Science Letters, 1998, 17, 2079-2081.	0.5	1
763	Analysis of a plate piezoelectric gyroscope by equations for a piezoelectric parallelepiped., 0,,.		1
764	Microstructure and Corrosion Resistance of Welding Seam of SAF 2205 Duplex Stainless Steel by Different Welding Materials. Corrosion Reviews, 2004, 22, 115-126.	1.0	1
765	Effect of pressure on melting temperature of carbon dioxide. Journal of Chemical Thermodynamics, 2005, 37, 1019-1022.	1.0	1
766	Effect of SiO2(1.2 $\hat{A}\mu m$)/Ti-Foil Substrate Nitridation on GaN Thin Films Grown by Reactive Evaporation Method. Japanese Journal of Applied Physics, 2005, 44, 8448-8450.	0.8	1
767	Structural and optical properties of nanostructured ZnO thin films deposited on quartz glass. , 2006,		1
768	Size Dependent Surface Energy and Surface Tension. , 0, , .		1
769	Effect of iron purity on oxidation kinetics at 600 \hat{A}° C to 900 \hat{A}° C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 791-793.	1.1	1
770	Wear behaviour of 85Al–10La–5Ni alloy prepared by powder metallurgy. Materials Science and Technology, 2006, 22, 604-606.	0.8	1
771	Enhanced tensile ductility in an electrodeposited nanocrystalline Ni., 0,,.		1
772	Size Effects on Miscibility and Glass Transition Temperature of PS/TMPC Blend Films: a Simulation and Thermodynamic Approach. Key Engineering Materials, 2007, 334-335, 105-108.	0.4	1
773	Reply to comment on †Modelling of surface energies of elemental crystals'. Journal of Physics Condensed Matter, 2009, 21, 198002.	0.7	1
774	Microstructure and Mechanical Properties of Multicomponent Aluminum Alloy by Rapid Solidification. Journal of Materials Engineering and Performance, 2009, 18, 79-82.	1.2	1

#	Article	IF	CITATIONS
775	Effect of carbon concentration on shear modulus of (W1/2Al1/2)CZ. Journal of Applied Physics, 2011, 109, 073519.	1.1	1
776	Effects of asymmetric and nonuniform mass layers on quartz crystal microbalances. Philosophical Magazine Letters, 2013, 93, 27-33.	0.5	1
777	Comparative Studies of Rare-Earth Element Y-Doped In 2 O 3 by First-Principles Calculations. Chinese Physics Letters, 2014, 31, 087101.	1.3	1
778	Coordination micelles containing silver nanoparticles and the antibacterial activity thereof. Journal of Controlled Release, 2015, 213, e33-e34.	4.8	1
779	A method for action recognition based on pose and interest points. Multimedia Tools and Applications, 2015, 74, 6091-6109.	2.6	1
780	Nature of the electrochemical HClO 4 /Pt(111) interface. Applied Surface Science, 2017, 400, 426-433.	3.1	1
781	Unconventional behavior of gas molecules on Fe (1 1 1). Computational Materials Science, 2018, 153, 82-87.	1.4	1
782	Oxidation Resistance Failure of Dilute CuAl alloys at 800 \hat{A}° C. Materials Today Communications, 2020, 25, 101529.	0.9	1
783	Understanding water slippage through carbon nanotubes. Physical Chemistry Chemical Physics, 2021, 23, 14737-14745.	1.3	1
784	Physicochemical insight into gap openings in graphene. , 0, .		1
785	Oxidation kinetics of nanocrystalline Al thin films. Anti-Corrosion Methods and Materials, 2019, 66, 638-643.	0.6	1
786	Mesoporous FeMoV Oxide Nanosheets Supported on Nickel Foam as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 14059-14067.	2.5	1
787	W coordinated with unsymmetrical S1N3 (W-S1N3) as an electrocatalyst for efficient ammonia synthesis. Materials Letters, 2022, 320, 132381.	1.3	1
788	Transmission of electric energy through an elastic wall. , 0, , .		0
789	FAILURE ANALYSIS OF PIPES IN RADIATE SECTION OF ETHYLENE CRACKING DECOMPOSITION FURNACE INDUCED BY SULFURIZATION. Corrosion Reviews, 2002, 20, 531-536.	1.0	0
790	Surface coating on steel by pressure friction. Materials Science and Technology, 2002, 18, 1382-1384.	0.8	0
791	Failure Analysis of an Oxidative Chlorination Reactor Clad with AISI 304L Stainless Steel. Protection of Metals, 2003, 39, 595-596.	0.2	0
792	Binary phase equilibrium shift induced by interface stress. Scripta Materialia, 2003, 49, 547-550.	2.6	0

#	Article	IF	Citations
793	Thermodynamic Consideration on Solid Transition of CdSe Nanocrystals Induced by Pressure ChemInform, 2004, 35, no.	0.1	O
794	Properties and application of iron-based shape memory alloy. Journal of Bionic Engineering, 2005, 2, 69-73.	2.7	0
795	The Size Range of Volume Change of Melting. Materials Science Forum, 2005, 475-479, 603-606.	0.3	0
796	Phase-Transitions in Langmuir-Blodgett and Cast Films of a Ferroelectric Liquid Crystal. , 0, , .		0
797	Size Effect on Phase Transition. , 0, , .		0
798	Phase-Transitions in Langmuir-Blodgett and Cast Films of a Ferroelectric Liquid Crystal. Analytical Sciences, 2007, 23, 775-779.	0.8	0
799	The critical layer number of Stranski–Krastanov growth mode epitaxial growth for bcc metallic thin films. Materials Letters, 2007, 61, 5199-5201.	1.3	0
800	CRITICAL THICKNESS OF EPITAXIAL GROWN SEMICONDUCTOR FILMS WITH STRAINED STRUCTURE. Surface Review and Letters, 2008, 15, 829-832.	0.5	0
801	Cohesive energy and surface energy of fcc metallic nanocrystals. , 2008, , .		0
802	GROWTH MODE OF GRAPHENE LAYERS DEPOSITED ON SiO ₂ SUBSTRATE. International Journal of Modern Physics B, 2009, 23, 3643-3648.	1.0	0
803	The Effect of Grain Size and Strain Rate on the Tensile Ductility of Bulk Nanostructured Metals and Alloys. Materials Science Forum, 2009, 633-634, 393-410.	0.3	0
804	Density functional theory study of surface catalysis and adsorption on several elements in Group I-B and VIII. Frontiers of Physics in China, 2009, 4, 337-355.	1.0	0
805	SELF-FORMATION OF MgO OR Al ₂ O ₃ SURFACE LAYER BY ANNEALING OF CuMg OR CuAl DILUTE ALLOYS. International Journal of Modern Physics B, 2010. 24. 3035-3040.	1.0	0
806	SURFACE RELAXATION INDUCED STABILITY OF LOW-SYMMYTRIC STRUCTURES OF AG CLUSTERS. International Journal of Modern Physics B, 2010, 24, 2756-2761.	1.0	0
807	Thermodynamics of Phase Transitions. , 2011, , 157-206.		0
808	Heat Capacity, Entropy, and Nanothermodynamics. , 2011, , 67-118.		0
809	Phase Diagrams. , 2011, , 119-156.		0
810	Thermodynamics of Interfaces., 2011,, 207-293.		0

#	Article	lF	CITATIONS
811	Mechanical Behaviors of Electrodeposited Bulk Nanocrystalline Metals and Alloys. Materials Science Forum, 2011, 683, 113-126.	0.3	0
812	Improved electromigration reliability of Cu films by doping and interface engineering. Solid State Communications, 2012, 152, 210-214.	0.9	0
813	Phase stability and elastic properties of (W0.5Al0.5)C phase with a novel NiAs-type structure. RSC Advances, 2014, 4, 42585-42590.	1.7	0
814	Inhibition of osteosarcoma growth and metastasis using a polysaccharide derivative of Amy-g-PLLD for the delivery of AEG-1 siRNA. Nano Research, 2018, 11, 3886-3898.	5.8	0
815	Raising glass transition temperature of polymer nanofilms as a function of negative interface energy. Physical Chemistry Chemical Physics, 2019, 21, 5224-5231.	1.3	0
816	Self-supported hierarchical nanoporous Cu/Mo@MoOx hybrid electrodes as robust nonprecious electrocatalysts for high-efficiency hydrogen evolution. Current Nanoscience, 2021, 16, .	0.7	0
817	SIZE DEPENDENCE OF CURIE TEMPERATURE IN PbZr _{1-x} Ti _{x} O < ULTRAFINE PARTICLES. , 2002, , .	sub>3 <td>ox di</td>	ox di
818	Strain-tunable magnetic and electronic properties of a CuCl _{3} monolayer. Physical Chemistry Chemical Physics, 0, , .	1.3	0