
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7496755/publications.pdf Version: 2024-02-01

Номенле Ци

#	Article	IF	CITATIONS
1	Deep convolutional networks do not classify based on global object shape. PLoS Computational Biology, 2018, 14, e1006613.	1.5	206
2	Bayesian generic priors for causal learning Psychological Review, 2008, 115, 955-984.	2.7	176
3	Intuitive Physics: Current Research and Controversies. Trends in Cognitive Sciences, 2017, 21, 749-759.	4.0	85
4	Local features and global shape information in object classification by deep convolutional neural networks. Vision Research, 2020, 172, 46-61.	0.7	54
5	A biological motion toolbox for reading, displaying, and manipulating motion capture data in research settings. Journal of Vision, 2013, 13, 7-7.	0.1	51
6	Bayesian analogy with relational transformations Psychological Review, 2012, 119, 617-648.	2.7	42
7	Intact recognition, but attenuated adaptation, for biological motion in youth with autism spectrum disorder. Autism Research, 2016, 9, 1103-1113.	2.1	40
8	Emergence of analogy from relation learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4176-4181.	3.3	40
9	Structural processing in biological motion perception. Journal of Vision, 2010, 10, 13-13.	0.1	30
10	Physical and Biological Constraints Govern Perceived Animacy of Scrambled Human Forms. Psychological Science, 2013, 24, 1133-1141.	1.8	29
11	Joints and their relations as critical features in action discrimination: Evidence from a classification image method. Journal of Vision, 2015, 15, 20-20.	0.1	29
12	Perception of Social Interactions for Spatially Scrambled Biological Motion. PLoS ONE, 2014, 9, e112539.	1.1	28
13	Individual differences in high-level biological motion tasks correlate with autistic traits. Vision Research, 2017, 141, 136-144.	0.7	28
14	In situ bidirectional human-robot value alignment. Science Robotics, 2022, 7, .	9.9	27
15	Computing dynamic classification images from correlation maps. Journal of Vision, 2006, 6, 12.	0.1	26
16	Neural adaptation in pSTS correlates with perceptual aftereffects to biological motion and with autistic traits. Neurolmage, 2016, 136, 149-161.	2.1	25
17	Social Interactions Receive Priority to Conscious Perception. PLoS ONE, 2016, 11, e0160468.	1.1	23
18	Learning motion discrimination with suppressed MT. Vision Research, 2004, 44, 1817-1825.	0.7	22

#	Article	IF	CITATIONS
19	Shape recognition alters sensitivity in stereoscopic depth discrimination. Journal of Vision, 2006, 6, 7.	0.1	20
20	A Bayesian Theory of Sequential Causal Learning and Abstract Transfer. Cognitive Science, 2016, 40, 404-439.	0.8	16
21	Individual differences in spontaneous analogical transfer. Memory and Cognition, 2017, 45, 576-588.	0.9	16
22	The discovery and comparison of symbolic magnitudes. Cognitive Psychology, 2014, 71, 27-54.	0.9	14
23	Perception of Human Interaction Based on Motion Trajectories: From Aerial Videos to Decontextualized Animations. Topics in Cognitive Science, 2018, 10, 225-241.	1.1	14
24	The Glare Effect Does Not Give Rise to a Longer-Lasting Afterimage. Perception, 2006, 35, 701-707.	0.5	13
25	Revisiting the importance of common body motion in human action perception. Attention, Perception, and Psychophysics, 2016, 78, 30-36.	0.7	13
26	Verbal analogy problem sets: An inventory of testing materials. Behavior Research Methods, 2020, 52, 1803-1816.	2.3	13
27	Causal competition based on generic priors. Cognitive Psychology, 2016, 86, 62-86.	0.9	10
28	Causal Action: A Fundamental Constraint on Perception and Inference About Body Movements. Psychological Science, 2017, 28, 798-807.	1.8	9
29	Probabilistic analogical mapping with semantic relation networks Psychological Review, 2022, 129, 1078-1103.	2.7	9
30	Generative Inferences Based on Learned Relations. Cognitive Science, 2017, 41, 1062-1092.	0.8	8
31	Role of gamma-band synchronization in priming of form discrimination for multiobject displays Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 610-617.	0.7	7
32	Exploring biological motion perception in two-stream convolutional neural networks. Vision Research, 2021, 178, 28-40.	0.7	7
33	Intact perception of coherent motion, dynamic rigid form, and biological motion in chronic schizophrenia. Psychiatry Research, 2018, 268, 53-59.	1.7	6
34	Predicting patterns of similarity among abstract semantic relations Journal of Experimental Psychology: Learning Memory and Cognition, 2022, 48, 108-121.	0.7	6
35	When a never-seen but less-occluded image is better recognized: Evidence from old–new memory experiments. Journal of Vision, 2008, 8, 31.	0.1	5
36	The Impact of Autistic Traits on Self-Recognition of Body Movements. Frontiers in Psychology, 2019, 9, 2687.	1.1	4

#	Article	IF	CITATIONS
37	Causal actions enhance perception of continuous body movements. Cognition, 2020, 194, 104060.	1.1	4
38	Classification Images Reveal that Deep Learning Networks Fail to Perceive Illusory Contours. Journal of Vision, 2017, 17, 569.	0.1	4
39	When a never-seen but less-occluded image is better recognized: Evidence from same-different matching experiments and a model. Journal of Vision, 2009, 9, 4-4.	0.1	3
40	Flash-lag effects in biological motion interact with body orientation and action familiarity. Vision Research, 2017, 140, 13-24.	0.7	3
41	Parts beget parts: Bootstrapping hierarchical object representations through visual statistical learning. Cognition, 2021, 209, 104515.	1.1	3
42	A unified psychological space for human perception of physical and social events. Cognitive Psychology, 2021, 128, 101398.	0.9	3
43	Understanding the visual perception of awkwardÂbody movements: How interactions go awry. Attention, Perception, and Psychophysics, 2020, 82, 2544-2557.	0.7	3
44	From Semantic Vectors to Analogical Mapping. Current Directions in Psychological Science, 2022, 31, 355-361.	2.8	3
45	Categorizing coordination from the perception of joint actions. Attention, Perception, and Psychophysics, 2018, 80, 7-13.	0.7	2
46	Individual Differences in Self-recognition from Body Movements. Journal of Vision, 2018, 18, 1039.	0.1	1
47	Evidence that low IQ, but not schizophrenia, impairs motion integration. Journal of Vision, 2018, 18, 51.	0.1	1
48	Enhancement of Representational Sparsity in Deep Neural Networks Can Improve Generalization. Journal of Vision, 2019, 19, 209b.	0.1	1
49	Aesthetic preferences for causality in biological movements arise from visual processes. Psychonomic Bulletin and Review, 2022, , 1.	1.4	1
50	What the Bayesian framework has contributed to understanding cognition: Causal learning as a case study. Behavioral and Brain Sciences, 2011, 34, 203-204.	0.4	0
51	Human efficiency in detecting and discriminating biological motion. Journal of Vision, 2017, 17, 4.	0.1	0
52	Features derived from a deep neural network distinguish visual cues used by CCTV experts versus novices. Journal of Vision, 2021, 21, 1965.	0.1	0
53	Aesthetic experience is influenced by causality in biological movements. Journal of Vision, 2021, 21, 1916.	0.1	0
54	Seeing illusory body movements in human causal interactions. Journal of Vision, 2017, 17, 68.	0.1	0

#	Article	IF	CITATIONS
55	The importance of gaze coherence of CCTV operators in facilitating the ability to recognise harmful intentions. Journal of Vision, 2017, 17, 546.	0.1	0
56	That was awkward! How greetings go awry. Journal of Vision, 2018, 18, 670.	0.1	0
57	Behavioral oscillations reveal hierarchical representation of biological motion. Journal of Vision, 2018, 18, 54.	0.1	Ο
58	Social Threat Perception from Body Movements. Journal of Vision, 2019, 19, 191b.	0.1	0
59	Temporal Boundary Extension in the Representation of Actions. Journal of Vision, 2019, 19, 38b.	0.1	Ο
60	Recursive Networks Reveal Illusory Contour Classification Images. Journal of Vision, 2019, 19, 241a.	0.1	0
61	Can two-stream convolutional neural networks emulate human perception of biological movements?. Journal of Vision, 2019, 19, 192a.	0.1	0
62	Show Me What You Can Do: Capability Calibration on Reachable Workspace for Human-Robot Collaboration. IEEE Robotics and Automation Letters, 2022, 7, 2644-2651.	3.3	0