Christine Finnie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7495484/publications.pdf Version: 2024-02-01

CHDISTINE FINNIE

#	Article	IF	CITATIONS
1	Proteome Analysis of Grain Filling and Seed Maturation in Barley. Plant Physiology, 2002, 129, 1308-1319.	4.8	239
2	Proteome analysis of barley seeds: Identification of major proteins from two-dimensional gels (pI 4–7). Proteomics, 2004, 4, 2437-2447.	2.2	125
3	Effects of Â-1,3-glucan from Septoria tritici on structural defence responses in wheat. Journal of Experimental Botany, 2009, 60, 4287-4300.	4.8	124
4	14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Molecular Biology, 1999, 40, 545-554.	3.9	122
5	Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms. Biochemical Journal, 2004, 378, 497-507.	3.7	114
6	Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics, 2010, 10, 2359-2368.	2.2	114
7	Proteins Exported via the PrsD-PrsE Type I Secretion System and the Acidic Exopolysaccharide Are Involved in Biofilm Formation by Rhizobium leguminosarum. Journal of Bacteriology, 2006, 188, 4474-4486.	2.2	110
8	Implications of highâ€ŧemperature events and water deficits on protein profiles in wheat (<i>Triticum) Tj ETQq0</i>	0 Q rgBT /	Overlock 10 103
9	Barley seed proteomics from spots to structures. Journal of Proteomics, 2009, 72, 315-324.	2.4	94
10	Structural Basis for Target Protein Recognition byÂthe Protein Disulfide Reductase Thioredoxin.	9.9	02

10	Structural basis for rarget protein Recognition by Athe Protein Disunde Reductase mioredoxin. Structure, 2006, 14, 1701-1710.	3.3	93
11	Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era. Frontiers in Plant Science, 2013, 4, 37.	3.6	84
12	Secretomics identifies <i>Fusarium graminearum</i> proteins involved in the interaction with barley and wheat. Molecular Plant Pathology, 2012, 13, 445-453.	4.2	83
13	The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Molecular Microbiology, 1997, 25, 135-146.	2.5	81
14	Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytologist, 2016, 211, 1255-1265.	7.3	77
15	Spatioâ€ŧemporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer, and endosperm tissues. Proteomics, 2007, 7, 4528-4540.	2.2	72
16	The NADPH-Dependent Thioredoxin Reductase/Thioredoxin System in Germinating Barley Seeds: Gene Expression, Protein Profiles, and Interactions between Isoforms of Thioredoxin <i>h</i> and Thioredoxin Reductase. Plant Physiology, 2008, 146, 323-324.	4.8	71
17	Responses of barley root and shoot proteomes to longâ€ŧerm nitrogen deficiency, shortâ€ŧerm nitrogen starvation and ammonium. Plant, Cell and Environment, 2011, 34, 2024-2037.	5.7	65
18	Feasibility study of a tissue-specific approach to barley proteome analysis: aleurone layer, endosperm, embryo and single seeds. Journal of Cereal Science, 2003, 38, 217-227.	3.7	64

2

CHRISTINE FINNIE

#	Article	IF	CITATIONS
19	Characterization of <i>Rhizobium leguminosarum</i> Exopolysaccharide Glycanases That Are Secreted via a Type I Exporter and Have a Novel Heptapeptide Repeat Motif. Journal of Bacteriology, 1998, 180, 1691-1699.	2.2	64
20	Proteomes of the barley aleurone layer: A model system for plant signalling and protein secretion. Proteomics, 2011, 11, 1595-1605.	2.2	58
21	Identification of thioredoxin?h-reducible disulphides in proteomes by differential labelling of cysteines: Insight into recognition and regulation of proteins in barley seeds by thioredoxin?h. Proteomics, 2005, 5, 1634-1644.	2.2	57
22	Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Science, 2006, 170, 808-821.	3.6	56
23	Analysis of early events in the interaction between <i>Fusarium graminearum</i> and the susceptible barley (<i>Hordeum vulgare</i>) cultivar Scarlett. Proteomics, 2010, 10, 3748-3755.	2.2	55
24	Identification, cloning and characterization of two thioredoxin h isoforms, HvTrxh1 and HvTrxh2, from the barley seed proteome. FEBS Journal, 2003, 270, 2633-2643.	0.2	54
25	Enrichment and Identification of Integral Membrane Proteins from Barley Aleurone Layers by Reversed-Phase Chromatography, SDS-PAGE, and LCâ^MS/MS. Journal of Proteome Research, 2006, 5, 3105-3113.	3.7	54
26	Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus?. Plant Molecular Biology, 2002, 49, 137-147.	3.9	50
27	Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley. Journal of Proteomics, 2010, 73, 743-752.	2.4	49
28	Effect of pulsed electric field on the germination of barley seeds. LWT - Food Science and Technology, 2012, 47, 161-166.	5.2	47
29	Spatio-temporal profiling and degradation of α-amylase isozymes during barley seed germination. FEBS Journal, 2007, 274, 2552-2565.	4.7	42
30	Plant redox proteomics. Journal of Proteomics, 2011, 74, 1450-1462.	2.4	41
31	Extracellular Glycanases of Rhizobium leguminosarum Are Activated on the Cell Surface by an Exopolysaccharide-Related Component. Journal of Bacteriology, 2000, 182, 1304-1312.	2.2	40
32	Barley peroxidase isozymes. International Journal of Mass Spectrometry, 2007, 268, 244-253.	1.5	38
33	Proteome Regulation during Olea europaea Fruit Development. PLoS ONE, 2013, 8, e53563.	2.5	36
34	Glycopeptide Enrichment Using a Combination of ZIC-HILIC and Cotton Wool for Exploring the Glycoproteome of Wheat Flour Albumins. Journal of Proteome Research, 2014, 13, 2696-2703.	3.7	36
35	Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. Plant, Cell and Environment, 2018, 41, 1311-1330.	5.7	36
36	Environmental and transgene expression effects on the barley seed proteome. Phytochemistry, 2004, 65, 1619-1627.	2.9	32

CHRISTINE FINNIE

#	Article	IF	CITATIONS
37	Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the <i>N</i> -Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress Â. Plant Physiology, 2014, 164, 951-965.	4.8	31
38	Crystal structures of barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 reveal features involved in protein recognition and possibly in discriminating the isoform specificity. Protein Science, 2008, 17, 1015-1024.	7.6	27
39	Proteolysis during the isoelectric focusing step of two-dimensional gel electrophoresis may be a common problem. Analytical Biochemistry, 2002, 311, 182-186.	2.4	26
40	From protein catalogues towards targeted proteomics approaches in cereal grains. Phytochemistry, 2011, 72, 1145-1153.	2.9	25
41	From Proteomics to Structural Studies of Cytosolic/Mitochondrial-Type Thioredoxin Systems in Barley Seeds. Molecular Plant, 2009, 2, 378-389.	8.3	24
42	The plasma membrane proteome of germinating barley embryos. Proteomics, 2009, 9, 3787-3794.	2.2	24
43	Identification of thioredoxin target disulfides in proteins released from barley aleurone layers. Journal of Proteomics, 2010, 73, 1133-1136.	2.4	23
44	Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight. Plant Physiology and Biochemistry, 2011, 49, 1362-1368.	5.8	22
45	Proteomic and activity profiles of ascorbate–glutathione cycle enzymes in germinating barley embryo. Phytochemistry, 2010, 71, 1650-1656.	2.9	20
46	Seed thioredoxin h. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 974-982.	2.3	20
47	Integration of the barley genetic and seed proteome maps for chromosome 1H, 2H, 3H, 5H and 7H. Functional and Integrative Genomics, 2009, 9, 135-143.	3.5	18
48	Structure of <i>Hordeum vulgare</i> NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 932-941.	2.5	18
49	Exploring the Plant–Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains. Journal of Proteome Research, 2016, 15, 1151-1167.	3.7	14
50	Spatio-temporal appearance of <i>î±</i> -amylase and limit dextrinase in barley aleurone layer in response to gibberellic acid, abscisic acid and salicylic acid. Journal of the Science of Food and Agriculture, 2015, 95, 141-147.	3.5	12
51	Monitoring intra- and extracellular redox capacity of intact barley aleurone layers responding to phytohormones. Analytical Biochemistry, 2016, 515, 1-8.	2.4	9
52	Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential. Journal of Proteomics, 2017, 169, 153-164.	2.4	9
53	A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphateâ€dependent thioredoxin reductase. Proteins: Structure, Function and Bioinformatics, 2014, 82, 607-619.	2.6	8
54	Proteome Analysis for the Study of Developmental Processes in Plants. , 0, , 151-184.		7

Christine Finnie

#	Article	IF	CITATIONS
55	Surveying the Plant Cell Wall Proteome, or Secretome. , 0, , 185-209.		7
56	The barley grain thioredoxin system – an update. Frontiers in Plant Science, 2013, 4, 151.	3.6	7
57	Barley Proteome Analysis, Starch Degrading Enzymes and Proteinaceous Inhibitors. Journal of Applied Glycoscience (1999), 2003, 50, 277-282.	0.7	5
58	Onset of grain filling is associated with a change in properties of linker histone variants in maize kernels. Planta, 2010, 231, 1127-1135.	3.2	5
59	Chapter 15 Molecular Recognition in NADPH-Dependent Plant Thioredoxin Systems—Catalytic Mechanisms, Structural Snapshots and Target Identifications. Advances in Botanical Research, 2009, 52, 461-495.	1.1	4
60	Barley Grain Proteins. , 2014, , 123-168.		4
61	Immobilisation of barley aleurone layers enables parallelisation of assays and analysis of transient gene expression in single cells. Plant Physiology and Biochemistry, 2017, 118, 71-76.	5.8	3
62	Barley Proteomics. Compendium of Plant Genomes, 2018, , 345-361.	0.5	3
63	Identification of Thioredoxin Target Disulfides Using Isotope-Coded Affinity Tags. Methods in Molecular Biology, 2014, 1072, 677-685.	0.9	3
64	Plant Proteomics: Challenges and Resources. , 0, , 1-31.		2
65	Proteomics of Disulphide and Cysteine Oxidoreduction. , 0, , 71-97.		2
66	Plant Plasma Membrane Proteomics: Challenges and Possibilities. , 2011, , 411-434.		2
67	Quantitative Proteomics Analysis of Barley-Based Liquid Feed and the Effect of Protease Inhibitors and NADPH-Dependent Thioredoxin Reductase/Thioredoxin (NTR/Trx) System. Journal of Agricultural and Food Chemistry, 2019, 67, 6432-6444.	5.2	1
68	Structural Proteomics. , 0, , 99-128.		0
69	Cereal Proteomics. , 0, , 129-149.		0
70	Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes. Plant Science, 2021, 308, 110792.	3.6	0
71	Interactions between Barley .ALPHAAmylases, Substrates, Inhibitors and Regulatory Proteins. Journal of Applied Glycoscience (1999), 2006, 53, 163-169.	0.7	0

72 Proteomic Analysis of Post-Translational Modifications by Mass Spectrometry. , 0, , 33-53.

0

#	Article	IF	CITATIONS
73	Strategies for the Investigation of Protein–Protein Interactions in Plants. , 0, , 55-70.		Ο
74	Proteomics of Plant Mitochondria. , 0, , 211-243.		0