List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7495347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonlocal thermo-elastic constitutive relation of fibre-reinforced composites. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 176-187.	1.5	7
2	A mechanism-based spatiotemporal non-local constitutive formulation for elastodynamics of composites. Mechanics of Materials, 2019, 128, 105-116.	1.7	15
3	Asymptotic Crack Tip Fields in Linear and Nonlinear Materials and Their Role in Crack Propagation. Physical Mesomechanics, 2019, 22, 18-31.	1.0	9
4	Flexural behavior of RC beams retrofitted with ultra-high strength concrete. Construction and Building Materials, 2018, 175, 815-824.	3.2	61
5	Analysis of the early-age cracking in concrete made from rapid hardening cement. Hormigon Y Acero, 2018, 69, 101-112.	0.1	5
6	Application of a self-compacting ultra-high-performance fibre-reinforced concrete to retrofit RC beams subjected to repeated loading. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	0.8	1
7	Fatigue behaviour of damaged RC beams strengthened with ultra high performance fibre reinforced concrete. International Journal of Fatigue, 2018, 116, 659-668.	2.8	63
8	Simulation of self-compacting concrete in an L-box using smooth particle hydrodynamics. Magazine of Concrete Research, 2017, 69, 618-628.	0.9	7
9	Mechanical and fracture properties of a self-compacting version of CARDIFRC Mix II. Sadhana - Academy Proceedings in Engineering Sciences, 2017, 42, 795-803.	0.8	4
10	Simulation of the flow of self-compacting concrete in the V-funnel by SPH. Cement and Concrete Research, 2017, 100, 47-59.	4.6	32
11	Flexural Fatigue Behavior of a Self-Compacting Ultrahigh Performance Fiber-Reinforced Concrete. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	16
12	Proportioning of self-compacting concrete mixes based on target plastic viscosity and compressive strength: Part II - experimental validation. Journal of Sustainable Cement-Based Materials, 2016, 5, 217-232.	1.7	16
13	Simulation of self-compacting concrete flow in the J-ring test using smoothed particle hydrodynamics (SPH). Cement and Concrete Research, 2016, 89, 27-34.	4.6	25
14	A new fatigue failure theory for multidirectional fiber-reinforced composite laminates with arbitrary stacking sequence. International Journal of Fatigue, 2016, 87, 294-300.	2.8	43
15	Influence of mix composition and strength on the fracture properties of self-compacting concrete. Construction and Building Materials, 2016, 110, 312-322.	3.2	40
16	A bridging law and its application to the analysis of toughness of carbon nanotube-reinforced composites and pull-out of fibres grafted with nanotubes. Archive of Applied Mechanics, 2016, 86, 361-373.	1.2	8
17	Proportioning of self–compacting concrete mixes based on target plastic viscosity and compressive strength: Part I - mix design procedure. Journal of Sustainable Cement-Based Materials, 2016, 5, 199-216.	1.7	28
18	Effect of cone lift rate on the flow time of self-compacting concrete. Magazine of Concrete Research, 2016, 68, 80-86.	0.9	2

#	Article	IF	CITATIONS
19	Estimation of the yield stress and distribution of large aggregates from slump flow test of self-compacting concrete mixes using smooth particle hydrodynamics simulation. Journal of Sustainable Cement-Based Materials, 2016, 5, 117-134.	1.7	10
20	St Venant Torsion and Bending of Prismatic Composite Shafts. Proceedings of the Indian National Science Academy, 2016, .	0.5	0
21	A new approach to the design of RC structures based on concrete mix characteristic length. International Journal of Fracture, 2015, 191, 147-165.	1.1	7
22	3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test. Computational Particle Mechanics, 2014, 1, 373-389.	1.5	36
23	3D modelling of the flow of self-compacting concrete with or without steel fibres. Part II: L-box test and the assessment of fibre reorientation during the flow. Computational Particle Mechanics, 2014, 1, 391-408.	1.5	29
24	An improved Puck's failure theory for fibre-reinforced composite laminates including the in situ strength effect. Composites Science and Technology, 2014, 98, 86-92.	3.8	40
25	Reorientation of short steel fibres during the flow of self-compacting concrete mix and determination of the fibre orientation factor. Cement and Concrete Research, 2014, 56, 112-120.	4.6	78
26	Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete. Engineering Fracture Mechanics, 2013, 110, 477-488.	2.0	83
27	Influence of processing defects on the measured properties of Cu–Al2O3 composites: A forensic investigation. Composites Part A: Applied Science and Manufacturing, 2013, 46, 140-146.	3.8	15
28	Determination of size-independent specific fracture energy of concrete mixes by the tri-linear model. Cement and Concrete Research, 2013, 49, 82-88.	4.6	56
29	Determination of size-independent specific fracture energy of concrete mixes by two methods. Cement and Concrete Research, 2013, 50, 19-25.	4.6	59
30	Determination of size-independent specific fracture energy of normal- and high-strength self-compacting concrete from wedge splitting tests. Construction and Building Materials, 2013, 48, 548-553.	3.2	49
31	Bilinear tension softening diagrams of concrete mixes corresponding to their size-independent specific fracture energy. Construction and Building Materials, 2013, 47, 1160-1166.	3.2	30
32	Honeybee combs: how the circular cells transform into rounded hexagons. Journal of the Royal Society Interface, 2013, 10, 20130299.	1.5	56
33	Mix proportioning of self-compacting normal and high-strength concretes. Magazine of Concrete Research, 2013, 65, 546-556.	0.9	32
34	Mix proportioning of self-compacting high- and ultra-high-performance concretes with and without steel fibres. Magazine of Concrete Research, 2012, 64, 1089-1100.	0.9	28
35	High-rate deformation and fracture of fiber reinforced concrete. Journal of Applied Mechanics and Technical Physics, 2012, 53, 926-933.	0.1	30
36	Multi-scale dynamic fracture model for quasi-brittle materials. International Journal of Engineering Science, 2012, 61, 3-9.	2.7	48

#	Article	IF	CITATIONS
37	CARDIFRC – From Concept to Industrial Application. RILEM Bookseries, 2012, , 397-404.	0.2	3
38	Influence of micro-structural parameters and thermal cycling on the properties of CARDIFRC. Sadhana - Academy Proceedings in Engineering Sciences, 2012, 37, 125-132.	0.8	1
39	Development of self-compacting high and ultra high performance concretes with and without steel fibres. Cement and Concrete Composites, 2012, 34, 185-190.	4.6	89
40	Performance of joints in reinforced concrete slabs for two-way spanning action. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2011, 164, 197-209.	0.4	7
41	Accurate simulation of mixed-mode cohesive crack propagation in quasi-brittle structures using exact asymptotic fields in XFEM: an overview. Journal of Mechanics of Materials and Structures, 2011, 6, 267-276.	0.4	6
42	Modelling the flow of selfâ€compacting concrete. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 713-723.	1.7	34
43	Size-independent fracture energy in plain concrete beams using tri-linear model. Construction and Building Materials, 2011, 25, 3051-3058.	3.2	48
44	Pattern transformations in periodic cellular solids under external stimuli. Journal of Applied Physics, 2011, 109, 084907.	1.1	5
45	Verification of the applicability of lattice model to concrete fracture by AE study. International Journal of Fracture, 2010, 161, 121-129.	1.1	23
46	Fracture process zone size and true fracture energy of concrete using acoustic emission. Construction and Building Materials, 2010, 24, 479-486.	3.2	170
47	Asymptotic fields ahead of mixed mode frictional cohesive cracks. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2010, 90, 710-720.	0.9	11
48	Behavior of RC Beams Retrofitted with CARDIFRC after Thermal Cycling. Journal of Materials in Civil Engineering, 2010, 22, 21-28.	1.3	8
49	Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9502-9506.	3.3	72
50	Fatigue life and self-induced volumetric changes of CARDIFRC. Magazine of Concrete Research, 2010, 62, 679-683.	0.9	17
51	Mechanical and fracture properties of cement-based bi-materials after thermal cycling. Cement and Concrete Research, 2009, 39, 1087-1094.	4.6	17
52	Prediction of the plastic viscosity of self-compacting steel fibre reinforced concrete. Cement and Concrete Research, 2009, 39, 1209-1216.	4.6	72
53	Theory of Elasticity at the Nanoscale. Advances in Applied Mechanics, 2009, 42, 1-68.	1.4	222
54	Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. Journal of Mechanics of Materials and Structures, 2009, 4, 589-604.	0.4	46

#	Article	IF	CITATIONS
55	Nano-Cellular Materials with Unusual Mechanical and Physical Properties. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 19-25.	0.1	Ο
56	Elastic Fields in Quantum Dot Structures with Arbitrary Shapes and Interface Effects. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 181-189.	0.1	0
57	Thermo-Elastic Size-Dependent Properties of Nano-Composites with Imperfect Interfaces. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 201-209.	0.1	Ο
58	Buckling-driven delamination growth in composite laminates: Guidelines for assessing the threat posed by interlaminar matrix delamination. Composites Part B: Engineering, 2008, 39, 386-395.	5.9	25
59	Asymptotic fields at the tip of a cohesive crack. International Journal of Fracture, 2008, 150, 55-74.	1.1	34
60	Size-dependent bending of thin metallic films. International Journal of Plasticity, 2008, 24, 991-1007.	4.1	37
61	Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Physical Review B, 2007, 75, .	1.1	90
62	Incremental-secant modulus iteration scheme and stress recovery for simulating cracking process in quasi-brittle materials using XFEM. International Journal for Numerical Methods in Engineering, 2007, 69, 2606-2635.	1.5	35
63	Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 1864-1873.	3.4	45
64	High performance fibre-reinforced cementitious composite (CARDIFRC) – Performance and application to retrofitting. Engineering Fracture Mechanics, 2007, 74, 151-167.	2.0	129
65	An overview of a hybrid crack element and determination of its complete displacement field. Engineering Fracture Mechanics, 2007, 74, 1107-1117.	2.0	28
66	Thermo-elastic properties of heterogeneous materials with imperfect interfaces: Generalized Levin's formula and Hill's connections. Journal of the Mechanics and Physics of Solids, 2007, 55, 1036-1052.	2.3	94
67	Accurate Simulation of Frictionless and Frictional Cohesive Crack Growth in Quasi-Brittle Materials Using XFEM. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2007, , 233-254.	0.1	3
68	Accurate Determination of Cohesive Crack Tip Fields Using XFEM and Admissible Stress Recovery. , 2006, , 935-936.		0
69	Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Physical Review B, 2006, 73, .	1.1	91
70	A scaling law for properties of nano-structured materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 1355-1363.	1.0	124
71	Strain distributions in nano-onions with uniform and non-uniform compositions. Nanotechnology, 2006, 17, 3380-3387.	1.3	20
72	Asymptotic fields at frictionless and frictional cohesive crack tips in quasibrittle materials. Journal of Mechanics of Materials and Structures, 2006, 1, 881-910.	0.4	33

#	Article	IF	CITATIONS
73	Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Materialia, 2006, 54, 2983-2990.	3.8	182
74	Deterministic size effect in the strength of cracked concrete structures. Cement and Concrete Research, 2006, 36, 171-188.	4.6	54
75	Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. International Journal for Numerical Methods in Engineering, 2006, 66, 1378-1410.	1.5	123
76	Compatible composition profiles and critical sizes of alloyed quantum dots. Physical Review B, 2006, 74, .	1.1	13
77	Conductivities of heterogeneous media with graded anisotropic constituents. Journal of Applied Physics, 2006, 100, 034906.	1.1	14
78	CARDIFRC®– Development and mechanical properties. Part I: Development and workability. Magazine of Concrete Research, 2005, 57, 347-352.	0.9	42
79	CARDIFRC®– Development and mechanical properties. Part II: Fibre distribution. Magazine of Concrete Research, 2005, 57, 421-432.	0.9	18
80	CARDIFRC®– Development and mechanical properties. Part III: Uniaxial tensile response and other mechanical properties. Magazine of Concrete Research, 2005, 57, 433-443.	0.9	81
81	Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 2005, 53, 1574-1596.	2.3	642
82	Micromechanics of Fiber Reinforced Cementitious Composites. , 2005, , 93-111.		1
83	Dislocation model of an asymmetric weak zone for problems of interaction between crack-like defects. Philosophical Magazine, 2005, 85, 1847-1864.	0.7	5
84	Optimum Composite Laminates Least Prone to Delamination under Mechanical and Thermal Loads. , 2005, , 137-170.		0
85	Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 3335-3353.	1.0	214
86	Effect of Surface Roughness, Type and Size of Model Aggregates on the Bond Strength of Aggregate/Mortar Interface. Journal of Materials Science, 2004, 12, 361-374.	1.2	34
87	Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element. International Journal of Fracture, 2004, 125, 207-225.	1.1	101
88	FEM for evaluation of weight functions for SIF, COD and higher-order coefficients with application to a typical wedge splitting specimen. International Journal of Fracture, 2004, 127, 201-237.	1.1	3
89	Seismic performance parameters of RC beams retrofitted by CARDIFRC®. Engineering Structures, 2004, 26, 2069-2079.	2.6	9
90	Modelling the behaviour of RC beams retrofitted with CARDIFRC®. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28, 757-780.	1.7	0

#	Article	IF	CITATIONS
91	XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials. International Journal for Numerical Methods in Engineering, 2004, 59, 1103-1118.	1.5	179
92	Discussion on "Lattice modelling of size effect in concrete strength―by Ince R, Arslan A, Karihaloo BL [Engineering Fracture Mechanics 2003;70:2307–20]. Engineering Fracture Mechanics, 2004, 71, 1629-1630.	2.0	2
93	A method for constructing the bilinear tension softening diagram of concrete corresponding to its true fracture energy. Magazine of Concrete Research, 2004, 56, 597-604.	0.9	51
94	Size effect in concrete beams. Engineering Fracture Mechanics, 2003, 70, 979-993.	2.0	102
95	Size-Scale Effects. Engineering Fracture Mechanics, 2003, 70, 2255.	2.0	1
96	Lattice modelling of size effect in concrete strength. Engineering Fracture Mechanics, 2003, 70, 2307-2320.	2.0	73
97	Lattice modelling of the failure of particle composites. Engineering Fracture Mechanics, 2003, 70, 2385-2406.	2.0	99
98	Coefficients of the crack tip asymptotic field for wedge splitting specimens. Engineering Fracture Mechanics, 2003, 70, 2407-2420.	2.0	45
99	Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Computers and Structures, 2003, 81, 119-129.	2.4	162
100	Direct evaluation of accurate coefficients of the linear elastic crack tip asymptotic field. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 719-729.	1.7	54
101	Fracture Model for Flexural Failure of Beams Retrofitted with CARDIFRC. Journal of Engineering Mechanics - ASCE, 2003, 129, 1028-1038.	1.6	31
102	Retrofitting of Reinforced Concrete Beams with CARDIFRC. Journal of Composites for Construction, 2003, 7, 174-186.	1.7	111
103	Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests. Magazine of Concrete Research, 2003, 55, 133-141.	0.9	109
104	CARDIFRC: MANUFACTURE AND CONSTITUTIVE BEHAVIOUR. , 2003, , 233-244.		6
105	A simple method for determining the true specific fracture energy of concrete. Magazine of Concrete Research, 2003, 55, 471-481.	0.9	108
106	A new technique for retrofitting damaged concrete structures. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2002, 152, 309-318.	0.4	20
107	Improved Lattice Model for Concrete Fracture. Journal of Engineering Mechanics - ASCE, 2002, 128, 57-65.	1.6	45
108	High-performance fibre-reinforce cementitious composties for retrofitting. International Journal of Materials and Product Technology, 2002, 17, 17.	0.1	13

#	Article	IF	CITATIONS
109	Size effect in the strength of concrete structures. Sadhana - Academy Proceedings in Engineering Sciences, 2002, 27, 449-459.	0.8	7
110	Approximate Green's functions for singular and higher order terms of an edge crack in a finite plate. Engineering Fracture Mechanics, 2002, 69, 959-981.	2.0	27
111	Coefficients of the crack tip asymptotic field for a standard compact tension specimen. International Journal of Fracture, 2002, 118, 1-15.	1.1	22
112	Constitutive modelling of ferroelectric composites with a PSZ matrix. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 837-864.	1.0	4
113	Looking into concrete. Magazine of Concrete Research, 2001, 53, 135-147.	0.9	8
114	Optimization techniques for the design of high-performance fibre-reinforced concrete. Structural and Multidisciplinary Optimization, 2001, 21, 32-39.	1.7	18
115	Homogenization-based multivariable element method for pure torsion of composite shafts. Computers and Structures, 2001, 79, 1645-1660.	2.4	14
116	Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity. Engineering Fracture Mechanics, 2001, 68, 1609-1630.	2.0	136
117	Higher order terms of the crack tip asymptotic field for a wedge-splitting specimen. International Journal of Fracture, 2001, 112, 129-137.	1.1	29
118	Higher order terms of the crack tip asymptotic field for a notched three-point bend beam. International Journal of Fracture, 2001, 112, 111-128.	1.1	73
119	Looking into concrete. Magazine of Concrete Research, 2001, 53, 135-147.	0.9	0
120	Micromechanics of Fiber-Reinforced Cementitious Composites. Advanced Engineering Materials, 2000, 2, 726-732.	1.6	16
121	Asymptotics of multiple crack interactions and prediction of effective modulus. International Journal of Solids and Structures, 2000, 37, 4261-4273.	1.3	28
122	Asymptotic bounds on overall moduli of cracked bodies. International Journal of Solids and Structures, 2000, 37, 6221-6237.	1.3	18
123	When does an adhesively bonded interfacial weak zone become the nucleus of a crack?. International Journal of Solids and Structures, 2000, 37, 7055-7069.	1.3	6
124	The solution of an inhomogeneity in a finite plane region and its application to composite materials. Composites Science and Technology, 2000, 60, 75-82.	3.8	5
125	Mechanics of fibre-reinforced cementitious composites. Computers and Structures, 2000, 76, 19-34.	2.4	15
126	Fracture Mechanical Prediction of Transitional Failure and Strength of Singly-Reinforced Beams. European Structural Integrity Society, 1999, 24, 31-66.	0.1	5

#	Article	IF	CITATIONS
127	An improved hybrid-stress element approach to torsion of shafts. Computers and Structures, 1999, 71, 535-563.	2.4	14
128	Application of a visco-elastic tension-softening constitutive model to cracked and ageing concrete. Construction and Building Materials, 1999, 13, 15-21.	3.2	13
129	Optimum in situ strength design of laminates under combined mechanical and thermal loads. Composite Structures, 1999, 47, 635-641.	3.1	16
130	Dynamic response of a cracked piezoelectric ceramic under arbitrary electro-mechanical impact. International Journal of Solids and Structures, 1999, 36, 5125-5133.	1.3	70
131	Application of penalty-equilibrium hybrid stress element method to crack problems. Engineering Fracture Mechanics, 1999, 63, 1-22.	2.0	26
132	Nonlinear Dynamics and Stability of a Two D.O.F. Elastic/Elasto-Plastic Model System. Meccanica, 1999, 34, 311-336.	1.2	4
133	Size effect in shallow and deep notched quasi-brittle structures. International Journal of Fracture, 1999, 95, 379-390.	1.1	103
134	Griffith crack moving along the interface of two dissimilar piezoelectric materials. International Journal of Fracture, 1998, 91, 197-203.	1.1	77
135	Design of Fiber-Reinforced DSP Mixes for Minimum Brittleness. Advanced Cement Based Materials, 1998, 7, 89-101.	0.4	16
136	A model for ageing visco-elastic tension softening materials. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 3, 27-39.	1.2	18
137	Two practical applications of crack kinking. Mechanics of Materials, 1998, 28, 263-270.	1.7	3
138	Fracture analysis for multi-material system with an interface crack. Computational Materials Science, 1998, 12, 1-8.	1.4	5
139	Tension softening of fibre-reinforced cementitious composites. Cement and Concrete Composites, 1997, 19, 315-328.	4.6	28
140	Strain-softening of concrete in uniaxial compression. Materials and Structures/Materiaux Et Constructions, 1997, 30, 195-209.	1.3	195
141	Micromechanical modelling of strain hardening and tension softening in cementitious composites. Computational Mechanics, 1997, 19, 453-462.	2.2	9
142	An accurate method for solving crack problems with discontinuous crack-line tractions. Computational Mechanics, 1997, 19, 496-500.	2.2	2
143	Matrix crack-induced delamination in composite laminates under transverse loading. Composite Structures, 1997, 38, 661-666.	3.1	21
144	On the solution of doubly periodic array of cracks. Mechanics of Materials, 1997, 26, 209-212.	1.7	22

#	Article	IF	CITATIONS
145	Enhanced Wear Performance of Transformation Toughened Ceramics by Microstructural Optimization. Journal of Tribology, 1996, 118, 740-747.	1.0	1
146	Pull-out of axisymmetric headed anchors. Materiaux Et Constructions, 1996, 29, 152-157.	0.3	6
147	Time-dependent tension softening. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 1, 295-304.	1.2	16
148	Subsurface and surface cracks under contact loading in transformation-toughened ceramics. Journal of the Mechanics and Physics of Solids, 1996, 44, 207-231.	2.3	6
149	Doubly periodic arrays of bridged cracks and short fibre-reinforced cementitious composites. Journal of the Mechanics and Physics of Solids, 1996, 44, 1565-1586.	2.3	40
150	Minimum cost design of multispan partially prestressed concrete T-beams using DCOC. Structural Optimization, 1996, 12, 75-86.	0.7	7
151	Mode I stress singularity and intensity factor at a crack tip terminating at a transversely isotropic-orthotropic bimaterial interface. International Journal of Fracture, 1996, 74, 325-340.	1.1	7
152	Improved Endurance Limit of Zirconia Ceramics by Overloading. Journal of the American Ceramic Society, 1996, 79, 2500-2502.	1.9	0
153	Optimum In Situ Strength Design of Composite Laminates. Part I: In Situ Strength Parameters. Journal of Composite Materials, 1996, 30, 1314-1337.	1.2	20
154	Optimum In Situ Strength Design of Composite Laminates. Part II: Optimum Design. Journal of Composite Materials, 1996, 30, 1338-1358.	1.2	21
155	MINIMUM COST DESIGN OF MULTISPAN PARTIALLY PRESTRESSED CONCRETE BEAMS USING DCOC. Engineering Optimization, 1996, 26, 35-59.	1.5	6
156	Arrest of Fatigue Cracks in Transformationâ€Toughened Ceramics. Journal of the American Ceramic Society, 1996, 79, 655-658.	1.9	3
157	Near Surface Cracks in Transformation Toughened Ceramics Subjected to Hertzian Contact Load. Solid Mechanics and Its Applications, 1996, , 413-420.	0.1	0
158	Asymptotics of three-dimensional macrocrack-microcrack interaction. International Journal of Solids and Structures, 1995, 32, 1495-1500.	1.3	9
159	Minimum cost design of RC frames using the DCOC method Part I: Columns under uniaxial bending actions. Structural Optimization, 1995, 10, 16-32.	0.7	16
160	Minimum cost design of RC frames using the DCOC method Part II: Columns under biaxial bending actions. Structural Optimization, 1995, 10, 33-39.	0.7	8
161	Minimum cost design of RC beams with segmentation using continuum-type optimality criteria. Structural Optimization, 1995, 9, 220-235.	0.7	6
162	Crack front trapping in transformation-toughened ceramics. International Journal of Fracture, 1995, 72, 171-181.	1.1	2

#	Article	IF	CITATIONS
163	Optimum Microstructure of Transformation-Toughened Ceramics for Enhanced Wear Performance. Journal of the American Ceramic Society, 1995, 78, 3-8.	1.9	16
164	Fatigue Crack Growth from Small Surface Cracks in Transformation-Toughened Ceramics. Journal of the American Ceramic Society, 1995, 78, 406-410.	1.9	8
165	Multiple cracks in transformation toughened ceramics. Mechanics of Materials, 1995, 21, 325-334.	1.7	2
166	Fracture mechanics and optimization $\hat{a} \in $ a useful tool for fibre-reinforced composite design. Composite Structures, 1995, 32, 453-466.	3.1	7
167	APPLICATION OF DCOC TO OPTIMUM PRESTRESSED CONCRETE BEAM DESIGN. Engineering Optimization, 1995, 25, 179-200.	1.5	5
168	Multiple Cracking in Angle-Ply Composite Laminates. Journal of Composite Materials, 1995, 29, 1321-1336.	1.2	11
169	Effective Spring Constant for Planar Arrays of Circular Cracks. International Journal of Damage Mechanics, 1995, 4, 103-116.	2.4	3
170	Materials With Negative Poisson's Ratio: A Qualitative Microstructural Model. Journal of Applied Mechanics, Transactions ASME, 1994, 61, 1001-1004.	1.1	24
171	Minimum cost design of reinforced concrete beams using continuum-type optimality criteria. Structural Optimization, 1994, 7, 91-102.	0.7	31
172	Optimization — a tool in advanced materials technology. Structural Optimization, 1994, 8, 9-15.	0.7	10
173	Minimum cost design of RC beams using DCOC Part I: Beams with freely-varying cross-sections. Structural Optimization, 1994, 7, 237-251.	0.7	14
174	Minimum cost design of RC beams using DCOC Part II: Beams with uniform cross-sections. Structural Optimization, 1994, 7, 252-259.	0.7	15
175	Surface cracks in transformation toughening ceramics. International Journal of Solids and Structures, 1994, 31, 51-64.	1.3	12
176	Cracked composite laminates least prone to delamination. Proceedings of the Royal Society A, 1994, 444, 17-35.	1.0	19
177	Mode II and mode III stress singularities and intensities at a crack tip terminating on a transversely isotropic-orthotropic bimaterial interface. Proceedings of the Royal Society A, 1994, 444, 447-460.	1.0	15
178	Cyclic fatigue of ZTC — Micromechanical modelling. Mechanics of Materials, 1993, 14, 291-299.	1.7	3
179	Fracture mechanics of cement mortar and plain concrete. Advanced Cement Based Materials, 1993, 1, 92-105.	0.4	30
180	Interaction between a surface crack and a subsurface inclusion. International Journal of Fracture, 1993, 63, 1-10.	1.1	11

#	Article	IF	CITATIONS
181	Interaction of penny-shaped cracks with a half-plane crack. International Journal of Solids and Structures, 1993, 30, 2117-2139.	1.3	16
182	Contribution of first-order moduli differences to dilatant transformation toughening. International Journal of Solids and Structures, 1993, 30, 151-160.	1.3	4
183	Mean stress criterion and internal cracks in transformation toughened ceramics. Scripta Metallurgica Et Materialia, 1993, 28, 465-469.	1.0	6
184	MOST EFFICIENT NLP TECHNIQUES IN OPTIMUM STRUCTURAL FRAME DESIGN. Engineering Optimization, 1993, 20, 261-272.	1.5	4
185	Minimum-Cost Design of Reinforced Concrete Members by Non-Linear Programming. , 1993, , 927-949.		8
186	Optimum Design of Plane Structural Frames by Non-Linear Programming. , 1993, , 897-926.		0
187	Tension softening of quasi-brittle materials modelled by singly and doubly periodic arrays of coplanar penny-shaped cracks. Mechanics of Materials, 1992, 13, 257-275.	1.7	24
188	Minimum-cost reinforced concrete beams and columns. Computers and Structures, 1991, 41, 509-518.	2.4	24
189	Modelling of tension softening in quasi-brittle materials by an array of circular holes with edge cracks. Mechanics of Materials, 1991, 11, 123-134.	1.7	25
190	Contribution of t m Phase Transformation to the Toughening of ZTA. Journal of the American Ceramic Society, 1991, 74, 1703-1706.	1.9	37
191	Minimum-cost design of reinforced concrete structures. Computers and Structures, 1991, 41, 1357-1364.	2.4	17
192	Tensile response of quasi-brittle materials. Pure and Applied Geophysics, 1991, 137, 461-487.	0.8	14
193	Test Methods for Determining Mode I Fracture Toughness of Concrete. , 1991, , 91-124.		2
194	Size-effect prediction from effective crack model for plain concrete. Materiaux Et Constructions, 1990, 23, 178-185.	0.3	16
195	An anisotropic damage model for plain concrete. Engineering Fracture Mechanics, 1990, 35, 205-209.	2.0	16
196	Minimum cost design of reinforced concrete structures. Structural Optimization, 1990, 2, 173-184.	0.7	30
197	Effective crack model for the determination of fracture toughness () of concrete. Engineering Fracture Mechanics, 1990, 35, 637-645.	2.0	128
198	Optimum design of frames under multiple loads. Computers and Structures, 1990, 36, 443-489.	2.4	7

#	Article	IF	CITATIONS
199	Fracture toughness of plain concrete from three-point bend specimens. Materials and Structures/Materiaux Et Constructions, 1989, 22, 185-193.	1.3	49
200	Minimum-weight design of structural frames. Computers and Structures, 1989, 31, 647-655.	2.4	6
201	An improved effective crack model for the determination of fracture toughness of concrete. Cement and Concrete Research, 1989, 19, 603-610.	4.6	92
202	Three-dimensional elastic crack tip interactions with shear transformation strains. International Journal of Solids and Structures, 1989, 25, 591-607.	1.3	13
203	Do Plain and Fibre-Reinforced Concretes have an R-Curve Behaviour?. , 1989, , 96-105.		2
204	A partially debonded ellipsoidal inclusion in an elastic medium. Part I: Stress and displacement fields. Mechanics of Materials, 1988, 7, 191-197.	1.7	11
205	A partially debonded ellipsoidal inclusion in an elastic medium. Part II: Stress intensity factors and debond opening displacement. Mechanics of Materials, 1988, 7, 199-203.	1.7	6
206	Optimum structures under strength and stiffness constraints. Computers and Structures, 1988, 28, 641-661.	2.4	11
207	Optimum design of statically indeterminate structures subject to strength and stiffness constraints and multiple loading. Computers and Structures, 1988, 30, 563-572.	2.4	4
208	Optimal design of elastic beams under multiple design constraints. International Journal of Solids and Structures, 1988, 24, 331-349.	1.3	6
209	THE SHAPE OF A PLANE SECTION OF MAXIMUM MOMENT OF INERTIA. Engineering Optimization, 1987, 10, 289-296.	1.5	5
210	On Minimax Optimum Design of Flexural Members in Presence of Self-Weight. Mechanics Based Design of Structures and Machines, 1987, 15, 17-28.	0.6	4
211	Discussion: Determination of specimen-size independent fracture toughness of plain concrete. Magazine of Concrete Research, 1987, 39, 113-115.	0.9	5
212	Optimum sections for given torsional and flexural rigidity. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1987, 409, 67-77.	1.5	9
213	Optimum design of statically indeterminate beams under multiple loads. Computers and Structures, 1987, 26, 521-538.	2.4	14
214	Determination of specimen-size independent fracture toughness of plain concrete. Magazine of Concrete Research, 1986, 38, 67-76.	0.9	138
215	A General Theory of Optimal Elastic Design for Structures With Segmentation. Journal of Applied Mechanics, Transactions ASME, 1986, 53, 242-248.	1.1	8
216	Prediction of load-deflection behavior of plain concrete from fracture energy. Cement and Concrete Research, 1986, 16, 373-382.	4.6	11

#	Article	IF	CITATIONS
217	Stress intensity factor and energy release rate for three-point bend specimens. Engineering Fracture Mechanics, 1986, 25, 315-321.	2.0	7
218	Limitations of Galerkin's method in optimal design of beam columns. Computer Methods in Applied Mechanics and Engineering, 1986, 58, 121-134.	3.4	1
219	COMPUTER-AIDED MINIMUM-WEIGHT DESIGN OF STATICALLY INDETERMINATE BEAMS. Engineering Optimization, 1986, 10, 139-156.	1.5	10
220	MINIMUM WEIGHT BEAM-COLUMNS OF GIVEN COMPLIANCE. Engineering Optimization, 1985, 8, 137-152.	1.5	2
221	Elastic Field of a Partially Debonded Elliptic Inhomogeneity in an Elastic Matrix (Plane-Strain). Journal of Applied Mechanics, Transactions ASME, 1985, 52, 835-840.	1.1	19
222	Elastic Field of an Elliptic Inhomogeneity With Debonding Over an Arc (Antiplane Strain). Journal of Applied Mechanics, Transactions ASME, 1985, 52, 91-97.	1.1	16
223	The stress field in a matrix containing a partially debonded elliptic inhomogeneity of identical Poisson's ratio. Journal of Materials Science, 1985, 20, 4103-4116.	1.7	4
224	Fracture of glassy brittle materials. Journal of Materials Science Letters, 1985, 4, 1285-1289.	0.5	10
225	Various size effects in fracture of concrete. Cement and Concrete Research, 1985, 15, 117-126.	4.6	50
226	Maximum Strength Design of Structural Frames. Journal of Structural Engineering, 1985, 111, 1267-1287.	1.7	8
227	Effect of Partially Debonded Inhomogeneities on the Fracture Toughness of an Elastic Matrix. , 1985, , 606-620.		0
228	Compressive fracture of brittle materials. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1984, 396, 297-314.	1.5	7
229	Effect of specimen and crack sizes, water/cement ratio and coarse aggregate texture upon fracture toughness of concrete. Magazine of Concrete Research, 1984, 36, 227-236.	0.9	119
230	Optimal strength design of beam-columns. International Journal of Solids and Structures, 1983, 19, 937-953.	1.3	8
231	Maximum strength/stiffness design of structural members in presence of self-weight. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1983, 389, 119-132.	1.5	11
232	MAXIMUM STIFFNESS BEAM-COLUMNS SUBJECTED TO CONCENTRATED MOMENTS. Engineering Optimization, 1983, 6, 229-234.	1.5	4
233	Optimal Strength and Stiffness Design of Beams. Journal of Structural Engineering, 1983, 109, 221-237.	1.7	9
234	Minimum-Weight Thin-Walled Cylinders of Given Torsional and Flexural Rigidity. Journal of Applied Mechanics, Transactions ASME, 1983, 50, 892-894.	1.1	10

#	Article	IF	CITATIONS
235	Minimum-weight multi-constraint vibrating cantilevers. International Journal of Solids and Structures, 1982, 18, 419-430.	1.3	6
236	On crack kinking and curving. Mechanics of Materials, 1982, 1, 189-201.	1.7	45
237	Optimal control of a dynamical system representing a gantry crane. Journal of Optimization Theory and Applications, 1982, 36, 409-417.	0.8	21
238	MINIMUM WEIGHT MEMBERS FOR GIVEN LOWER BOUNDS ON EIGENVALUES. Engineering Optimization, 1981, 5, 199-205.	1.5	2
239	Approximate Description of Crack Kinking and Curving. Journal of Applied Mechanics, Transactions ASME, 1981, 48, 515-519.	1.1	79
240	OPTIMAL DESIGN OF BEAM-COLUMNS SUBJECTED TO CONCENTRATED MOMENTS. Engineering Optimization, 1980, 5, 59-65.	1.5	11
241	Crack kinking under nonsymmetric loading. Engineering Fracture Mechanics, 1980, 13, 879-888.	2.0	56
242	Minimum-Weight Design of Thin-Walled Cylinders Subject to Flexural and Torsional Stiffness Constraints. Journal of Applied Mechanics, Transactions ASME, 1980, 47, 106-110.	1.1	17
243	MINIMUM WEIGHT DESIGN OF BEAM-COLUMNS. Engineering Optimization, 1980, 4, 193-197.	1.5	6
244	MINIMUM WEIGHT DESIGN OF MULTI-PURPOSE BEAM COLUMNS OF SOLID CONSTRUCTION. Engineering Optimization, 1979, 4, 51-54.	1.5	6
245	Fracture of solids containing arrays of cracks. Engineering Fracture Mechanics, 1979, 12, 49-77.	2.0	23
246	Optimal design of multi-purpose tie column of solid construction. International Journal of Solids and Structures, 1979, 15, 103-109.	1.3	13
247	The optimal design of beam-columns. International Journal of Solids and Structures, 1979, 15, 855-859.	1.3	11
248	Optimal design of multi-purpose tie-beams. Journal of Optimization Theory and Applications, 1979, 27, 427-438.	0.8	11
249	Optimal design of multi-purpose beam-columns. Journal of Optimization Theory and Applications, 1979, 27, 439-448.	0.8	13
250	Optimal design of multi-purpose structures. Journal of Optimization Theory and Applications, 1979, 27, 449-461.	0.8	9
251	The impossibility of comminuting small particles by compression. Nature, 1979, 279, 169-170.	13.7	12
252	A note on complexities of compression failure. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1979, 368, 483-493.	1.5	23

#	Article	IF	CITATIONS
253	Optimal Design of Multipurpose Sandwich Tie-Column. Journal of the Engineering Mechanics Division, 1979, 105, 465-469.	0.4	3
254	Fracture characteristics of solids containing doubly-periodic arrays of cracks. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1978, 360, 373-387.	1.5	19
255	Minimum-Weight Design of Multipurpose Tie-Beam of Solid Cross-Section. Engineering Optimization, 1978, 3, 245-247.	1.5	Ο
256	MINIMUM-WEIGHT DESIGN OF MULTI-PURPOSE TIE-COLUMN OF SOLID CONSTRUCTION. Engineering Optimization, 1978, 3, 239-244.	1.5	3
257	Spread of plasticity from a stack of cracks under mode I conditions. International Journal of Solids and Structures, 1977, 13, 367-375.	1.3	7
258	Minimum-weight design of hollow cylinders for given lower bounds on torsional and flexural rigidities. International Journal of Solids and Structures, 1977, 13, 1271-1280.	1.3	30
259	On the solution of optimization problems with singularities. International Journal of Solids and Structures, 1977, 13, 725-733.	1.3	20
260	Spread of plasticity from stacked stress concentrations. International Journal of Solids and Structures, 1977, 13, 221-228.	1.3	7
261	Minimum-weight design of multi-purpose cylindrical bars. International Journal of Solids and Structures, 1976, 12, 267-273.	1.3	49
262	Mobility of arrays of dissociated and superlattice dislocations in an internally stressed solid. Journal of Applied Physics, 1976, 47, 817-821.	1.1	0
263	Bypassing of a barrier by dissociated and superlattice dislocations. Journal of Applied Physics, 1975, 46, 5092-5096.	1.1	0
264	Dislocation mobility and the concept of flow stress. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1975, 344, 375-385.	1.5	1
265	Optimum design of vibrating cantilevers. Journal of Optimization Theory and Applications, 1973, 11, 638-654.	0.8	74