List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7495289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of human translation-competent lysates using dual centrifugation. RNA Biology, 2022, 19, 78-88.	3.1	7
2	A comprehensive coverage insurance for cells: revealing links between ribosome collisions, stress responses and mRNA surveillance. RNA Biology, 2022, 19, 609-621.	3.1	16
3	40S hnRNP particles are a novel class of nuclear biomolecular condensates. Nucleic Acids Research, 2022, 50, 6300-6312.	14.5	8
4	The broader sense of nonsense. Trends in Biochemical Sciences, 2022, 47, 921-935.	7.5	24
5	FUS-dependent liquid–liquid phase separation is important for DNA repair initiation. Journal of Cell Biology, 2021, 220, .	5.2	86
6	Characterisation of the Semliki Forest Virus-host cell interactome reveals the viral capsid protein as an inhibitor of nonsense-mediated mRNA decay. PLoS Pathogens, 2021, 17, e1009603.	4.7	20
7	Translation mediated by the nuclear cap-binding complex is confined to the perinuclear region via a CTIF–DDX19B interaction. Nucleic Acids Research, 2021, 49, 8261-8276.	14.5	10
8	The phase separation-dependent FUS interactome reveals nuclear and cytoplasmic function of liquid–liquid phase separation. Nucleic Acids Research, 2021, 49, 7713-7731.	14.5	53
9	Nanopore sequencing reveals endogenous NMD-targeted isoforms in human cells. Genome Biology, 2021, 22, 223.	8.8	25
10	Readthrough of stop codons under limiting ABCE1 concentration involves frameshifting and inhibits nonsense-mediated mRNA decay. Nucleic Acids Research, 2020, 48, 10259-10279.	14.5	28
11	SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nature Structural and Molecular Biology, 2020, 27, 959-966.	8.2	432
12	Human NMD ensues independently of stable ribosome stalling. Nature Communications, 2020, 11, 4134.	12.8	27
13	FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Research, 2020, 48, 6889-6905.	14.5	70
14	miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Progress in Neurobiology, 2020, 190, 101803.	5.7	31
15	Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032862.	5.5	150
16	The Role of Stress Granules and the Nonsense-mediated mRNA Decay Pathway in Antiviral Defence. Chimia, 2019, 73, 374.	0.6	9
17	The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Molecular Cell, 2019, 73, 490-504.e6.	9.7	151
18	Dissecting the functions of SMG5, SMG7, and PNRC2 in nonsense-mediated mRNA decay of human cells. Rna, 2018, 24, 557-573.	3.5	38

#	Article	IF	CITATIONS
19	Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Seminars in Cell and Developmental Biology, 2018, 75, 78-87.	5.0	126
20	New functions in translation termination uncovered for <scp>NMD</scp> factor <scp>UPF</scp> 3B. EMBO Journal, 2017, 36, 2928-2930.	7.8	8
21	Transcriptome-wide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways. Rna, 2017, 23, 189-201.	3.5	158
22	Virus Escape and Manipulation of Cellular Nonsense-Mediated mRNA Decay. Viruses, 2017, 9, 24.	3.3	50
23	Minor intron splicing is regulated by <scp>FUS</scp> and affected by <scp>ALS</scp> â€associated <scp>FUS</scp> mutants. EMBO Journal, 2016, 35, 1504-1521.	7.8	100
24	Nonsenseâ€mediated <scp>mRNA</scp> decay: novel mechanistic insights and biological impact. Wiley Interdisciplinary Reviews RNA, 2016, 7, 661-682.	6.4	170
25	Spermatogenesis Studies Reveal a Distinct Nonsense-Mediated mRNA Decay (NMD) Mechanism for mRNAs with Long 3′UTRs. PLoS Genetics, 2016, 12, e1005979.	3.5	13
26	Identification of Interactions in the NMD Complex Using Proximity-Dependent Biotinylation (BioID). PLoS ONE, 2016, 11, e0150239.	2.5	31
27	Synthesis and Characterization of Photoaffinity Probes that Target the 5-HT3 Receptor. Chimia, 2014, 68, 239.	0.6	6
28	A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD. Nucleic Acids Research, 2014, 42, 9217-9235.	14.5	80
29	The Host Nonsense-Mediated mRNA Decay Pathway Restricts Mammalian RNA Virus Replication. Cell Host and Microbe, 2014, 16, 403-411.	11.0	150
30	Characterization of Phosphorylation- and RNA-Dependent UPF1 Interactors by Quantitative Proteomics. Journal of Proteome Research, 2014, 13, 3038-3053.	3.7	26
31	Eukaryotic Initiation Factor 4G Suppresses Nonsense-Mediated mRNA Decay by Two Genetically Separable Mechanisms. PLoS ONE, 2014, 9, e104391.	2.5	39
32	Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. Nature Structural and Molecular Biology, 2013, 20, 936-943.	8.2	155
33	Nonsense-mediated mRNA decay — Mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 612-623.	1.9	325
34	RNA decay mechanisms: Specificity through diversity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 487-490.	1.9	19
35	elF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells. Nature Structural and Molecular Biology, 2013, 20, 710-717.	8.2	84
36	Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. Rna, 2013, 19, 1432-1448.	3.5	114

#	Article	IF	CITATIONS
37	Recent transcriptome-wide mapping of UPF1 binding sites reveals evidence for its recruitment to mRNA before translation. Translation, 2013, 1, e26977.	2.9	8
38	Paraquat Modulates Alternative Pre-mRNA Splicing by Modifying the Intracellular Distribution of SRPK2. PLoS ONE, 2013, 8, e61980.	2.5	20
39	Intimate liaison with SR proteins brings exon junction complexes to unexpected places. Nature Structural and Molecular Biology, 2012, 19, 1209-1211.	8.2	6
40	Analysis of Nonsenseâ€Mediated mRNA Decay in Mammalian Cells. Current Protocols in Cell Biology, 2012, 55, Unit27.4.	2.3	33
41	mRNP quality control goes regulatory. Trends in Genetics, 2012, 28, 70-77.	6.7	44
42	Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. Rna, 2011, 17, 2094-2107.	3.5	44
43	Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. Rna, 2011, 17, 2108-2118.	3.5	221
44	Cutting the nonsense: the degradation of PTC-containing mRNAs. Biochemical Society Transactions, 2010, 38, 1615-1620.	3.4	103
45	Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cellular and Molecular Life Sciences, 2010, 67, 677-700.	5.4	293
46	tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids Research, 2010, 38, 5833-5843.	14.5	20
47	How and where are nonsense mRNAs degraded in mammalian cells?. RNA Biology, 2010, 7, 28-32.	3.1	68
48	Processing bodies are not required for mammalian nonsense-mediated mRNA decay. Rna, 2009, 15, 1265-1273.	3.5	64
49	Equal transcription rates of productively and nonproductively rearranged immunoglobulin μ heavy chain alleles in a pro-B cell line. Rna, 2009, 15, 1021-1028.	3.5	16
50	SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nature Structural and Molecular Biology, 2009, 16, 49-55.	8.2	349
51	The meaning of nonsense. Trends in Cell Biology, 2008, 18, 315-321.	7.9	131
52	Recognition and elimination of nonsense mRNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 538-549.	1.9	107
53	Posttranscriptional Gene Regulation by Spatial Rearrangement of the 3′ Untranslated Region. PLoS Biology, 2008, 6, e92.	5.6	251
54	Recognition of nonsense mRNA: towards a unified model. Biochemical Society Transactions, 2008, 36, 497-501.	3.4	43

#	Article	IF	CITATIONS
55	Transcriptional Silencing of Nonsense Codon-containing Immunoglobulin μ Genes Requires Translation of Its mRNA. Journal of Biological Chemistry, 2007, 282, 16079-16085.	3.4	12
56	Angiotensinergic innervation of rat and human mesenteric resistant blood vessels. Nature Precedings, 2007, , .	0.1	0
57	EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′ UTR length. Nature Structural and Molecular Biology, 2006, 13, 462-464.	8.2	225
58	Applying the brakes on gene expression. Nature Structural and Molecular Biology, 2005, 12, 1024-1025.	8.2	1
59	Alternative splicing induced by nonsense mutations in the immunoglobulin VDJ exon is independent of truncation of the open reading frame. Rna, 2005, 11, 139-146.	3.5	19
60	Nonsense-associated alternative splicing of T-cell receptor genes: No evidence for frame dependence. Rna, 2005, 11, 147-156.	3.5	20
61	A GFP-based reporter system to monitor nonsense-mediated mRNA decay. Nucleic Acids Research, 2005, 33, e54-e54.	14.5	196
62	Transcriptional Silencing of Nonsense Codon-Containing Immunoglobulin Minigenes. Molecular Cell, 2005, 18, 307-317.	9.7	64
63	Efficient downregulation of immunoglobulin mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Research, 2004, 32, 3304-3315.	14.5	65
64	Intranuclear degradation of nonsense codon ontaining mRNA. EMBO Reports, 2002, 3, 646-651.	4.5	54
65	Precursor RNAs Harboring Nonsense Codons Accumulate Near the Site of Transcription. Molecular Cell, 2001, 8, 33-43.	9.7	115
66	Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature, 1998, 393, 185-187.	27.8	178
67	Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature, 1996, 381, 535-538.	27.8	238