Vania Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7494824/publications.pdf Version: 2024-02-01

VANIA SOUSA

#	Article	IF	CITATIONS
1	Influence of biomass waste from agro-industries on obtaining energetic gases assisted by chronoamperometric process. International Journal of Hydrogen Energy, 2022, 47, 735-746.	7.1	1
2	Study of structural and optical properties of ZnO nanoparticles synthesized by an eco-friendly tapioca-assisted route. Materials Chemistry and Physics, 2021, 258, 123926.	4.0	20
3	Monitoring of the interaction of calcium phosphate cement and lidocaine hydrochloride by electrochemical impedance spectroscopy during the drug release process. Journal of Applied Electrochemistry, 2021, 51, 463-471.	2.9	5
4	In situ drug release measuring in α-TCP cement by electrochemical impedance spectroscopy. Journal of Materials Science: Materials in Medicine, 2021, 32, 38.	3.6	5
5	Deposition of nanostructured LSM perovskite thin film on dense YSZ substrate by airbrushed solution combustion (ASC) for application in SOFC cathodes. International Journal of Hydrogen Energy, 2020, 45, 11749-11760.	7.1	10
6	Eco-friendly and cost-effective synthesis of ZnO nanopowders by Tapioca-assisted sol-gel route. Ceramics International, 2020, 46, 10835-10842.	4.8	24
7	Chemical synthesis of materials based on calcium zirconate for solid oxide fuel cells (SOFC). Environmental Progress and Sustainable Energy, 2019, 38, e13243.	2.3	7
8	Mixed Electrical Conduction of Calcium Aluminates Synthesized by Polymeric Precursors. Materials Research, 2019, 22, .	1.3	2
9	Physical, chemical and electric characterization of thermally treated rice husk ash and its potential application as ceramic raw material. Advanced Powder Technology, 2017, 28, 1228-1236.	4.1	32
10	Electrochemical characteristics of La 0.6 Sr 0.4 Co 1â^'y Fe y O 3 (y=0.2–1.0) fiber cathodes. Ceramics International, 2017, 43, 8715-8720.	4.8	17
11	Characterization of Silica Produced from Rice Husk Ash: Comparison of Purification and Processing Methods. Materials Research, 2017, 20, 512-518.	1.3	81
12	Effect of SrO on the electrical barrier formation and microstructure of TiO2 varistors. Materials Chemistry and Physics, 2016, 184, 91-100.	4.0	5
13	Electrical Properties of La _{0.6} Sr _{0.4} Co _{1–<i>y</i>} Fe _{<i>y</i>} O ₃ (<i>y</i> = 0.2–1.0) Fibers Obtained by Electrospinning. Journal of Physical Chemistry C, 2016, 120, 64-69.	3.1	20
14	Sintering and characterization of SrBi2Ta2O9 obtained by high-pressure processing at low temperatures. Journal of Solid State Chemistry, 2016, 233, 259-268.	2.9	0
15	Electrochemical Impedance Spectroscopy: Evaluation of Drug Delivery System of Alpha-Tricalcium Phosphate Cement. Materials Science Forum, 2015, 820, 293-296.	0.3	2
16	Microstructure and Thermal Conductivity of Porous Al ₂ O ₃ -ZrO ₂ Ceramics. Materials Science Forum, 2015, 820, 268-273.	0.3	0
17	Influence of fuel on morphology of LSM powders obtained by solution combustion synthesis. Powder Technology, 2015, 269, 481-487.	4.2	29
18	2-(Dimethylamino)ethyl Methacrylate/(2-Hydroxyethyl) Methacrylate/α-Tricalcium Phosphate Cryogels for Bone Repair, Preparation and Evaluation of the Biological Response of Human Trabecular Bone-Derived Cells and Mesenchymal Stem Cells. Polymers, 2014, 6, 2510-2525.	4.5	14

VANIA SOUSA

#	Article	IF	CITATIONS
19	Novel method for the obtainment of nanostructured calcium phosphate cements: Synthesis, mechanical strength and cytotoxicity. Powder Technology, 2013, 235, 599-605.	4.2	17
20	Influence of Substrate Temperature in the Morphology and Microstructure of YSZ Films Obtained on LSM Porous Substrate via Spray Pyrolysis. Materials Science Forum, 2012, 727-728, 691-696.	0.3	1
21	Electrical and Microstructural Properties of Varistors Based on Nanostructured Tetra-Needle Like Zinc Oxide Powders. Materials Science Forum, 2012, 727-728, 533-538.	0.3	0
22	Caracterização elétrica de blocos varistores à base de SnO2. Ceramica, 2012, 58, 349-356.	0.8	0
23	Synthesis of SrBi2Ta2O9 by solution combustion and its characterization. Powder Technology, 2012, 225, 239-243.	4.2	3
24	Electrical and microstructural properties of microwave sintered SnO2-based varistors. Ceramica, 2012, 58, 151-157.	0.8	4
25	Magnetic and Mössbauer behavior of the nanostructured MgFe2O4 spinel obtained at low temperature. Powder Technology, 2011, 210, 103-108.	4.2	63
26	Optoeletronic and Ferroeletric Applications. , 2011, , 41-55.		0
27	Microstructure and electrical properties of (Ta, Co, Pr) doped TiO2 based electroceramics. Journal of Materials Science: Materials in Electronics, 2010, 21, 246-251.	2.2	11
28	Elaboration of Yttria-Stabilized Zirconia Films on Porous Substrates. Materials Science Forum, 2010, 660-661, 707-711.	0.3	2
29	Magnetic and Structural Characterization of Nanostructured MgFe ₂ O ₄ Synthesized by Combustion Reaction. Particulate Science and Technology, 2009, 27, 519-527.	2.1	16
30	Influence of compaction manufacturing process on the physical and electrical characteristics of high-voltage varistor. Journal of Materials Science: Materials in Electronics, 2007, 18, 957-962.	2.2	1
31	(Ta, Cr)-doped {T}{i}O2 electroceramic systems. Journal of Materials Science: Materials in Electronics, 2006, 17, 79-84.	2.2	5
32	Brazilian Raw Materials Doped TiO ₂ Based Electroceramics. Materials Science Forum, 2006, 530-531, 444-448.	0.3	0
33	Recent research developments in SnO2-based varistors. Materials Chemistry and Physics, 2005, 90, 1-9.	4.0	75
34	Nonlinear behavior of TiO2·Ta2O5·MnO2 material doped with BaO and Bi2O3. Materials Chemistry and Physics, 2004, 85, 96-103.	4.0	16
35	Effect of atmosphere on the electrical properties of TiO2–SnO2varistor systems. Journal of Materials Science: Materials in Electronics, 2004, 15, 665-669	2.2	12
36	The effect of Ta2O5 and Cr2O3 on the electrical properties of TiO2 varistors. Journal of the European Ceramic Society, 2002, 22, 1277-1283.	5.7	39

VANIA SOUSA

#	Article	IF	CITATIONS
37	Electrical properties of ZnO-based varistors prepared by combustion synthesis. Journal of Materials Science: Materials in Electronics, 2002, 13, 319-325.	2.2	9
38	Combustion process in the synthesis of ZnO–Bi2O3. Ceramics International, 2000, 26, 561-564.	4.8	34
39	Combustion synthesized ZnO powders for varistor ceramics. Solid State Sciences, 1999, 1, 235-241.	0.7	98
40	Ceramic Coating Based on La, Sr and Co on Ferritic Stainless Steel for ITSOFC Interconnects. Materials Science Forum, 0, 727-728, 522-527.	0.3	1
41	Combustion Synthesis of LSM Powders from a Precursor Solution with Mixed Fuels. Materials Science Forum, 0, 727-728, 1329-1333.	0.3	1
42	Electrical Properties of a TiO ₂ -SrO Varistor System. Advanced Materials Research, 0, 975, 168-172.	0.3	2
43	Chemical Synthesis and Sintering Behaviour of Ca ₃ Al ₂ 0 ₆ Obtained by Polymeric Precursor Method. Materials Science Forum, 0, 820, 143-148.	0.3	2
44	Study of the Evolution of Phase Calcium Aluminate through the Method for Polymeric Precursors C ₁₂ A ₇ . Materials Science Forum, 0, 820, 137-142.	0.3	2
45	Perovskites Used in Fuel Cells. , 0, , .		5