Luc Bertrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7494604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Letter by Ferté, <i>et al</i> . Regarding Article, "Chronic Pressure Overload Induces Cardiac Hypertrophy and Fibrosis via Increases in SGLT1 and IL-18 Gene Expression in Mice". International Heart Journal, 2022, 63, 184-186.	0.5	1
2	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
3	Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes. Antioxidants, 2022, 11, 723.	2.2	7
4	The intra-mitochondrial O-GlcNAcylation system rapidly modulates OXPHOS function and ROS release in the heart. Communications Biology, 2022, 5, 349.	2.0	17
5	α-Tubulin acetylation on lysine 40 controls cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H1032-H1043.	1.5	3
6	Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 43-59.	1.8	72
7	Protein <i>O</i> â€GlcNAcylation levels are regulated independently of dietary intake in a tissue and timeâ€specific manner during rat postnatal development. Acta Physiologica, 2021, 231, e13566.	1.8	11
8	New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H838-H853.	1.5	18
9	AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Research in Cardiology, 2021, 116, 10.	2.5	26
10	You â€~heart' what you eat!. Cardiovascular Research, 2021, 117, 2294-2296.	1.8	1
11	A new degree of complexi(n)ty in the regulation of GLUT4 trafficking. Biochemical Journal, 2021, 478, 1315-1319.	1.7	0
12	AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radical Biology and Medicine, 2021, 166, 238-254.	1.3	52
13	Sex Differences of the Diabetic Heart. Frontiers in Physiology, 2021, 12, 661297.	1.3	18
14	Canagliflozin protects against sepsis capillary leak syndrome by activating endothelial α1AMPK. Scientific Reports, 2021, 11, 13700.	1.6	10
15	An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. International Journal of Molecular Sciences, 2021, 22, 9236.	1.8	9
16	Acetyl-CoA Carboxylase Inhibitor CP640.186 Increases Tubulin Acetylation and Impairs Thrombin-Induced Platelet Aggregation. International Journal of Molecular Sciences, 2021, 22, 13129.	1.8	4
17	Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Science Translational Medicine, 2020, 12, .	5.8	39
18	Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1820-1834.	1.8	51

#	Article	IF	CITATIONS
19	Myocardial glucotoxicity: Mechanisms and potential therapeutic targets. Archives of Cardiovascular Diseases, 2020, 113, 736-748.	0.7	16
20	α1AMP-Activated Protein Kinase Protects against Lipopolysaccharide-Induced Endothelial Barrier Disruption via Junctional Reinforcement and Activation of the p38 MAPK/HSP27 Pathway. International Journal of Molecular Sciences, 2020, 21, 5581.	1.8	9
21	Glucose transporters in cardiovascular system in health and disease. Pflugers Archiv European Journal of Physiology, 2020, 472, 1385-1399.	1.3	35
22	Cardiac metabolism as a driver and therapeutic target of myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 5937-5954.	1.6	101
23	Diabetic Cardiomyopathy and Ischemic Heart Disease: Prevention and Therapy by Exercise and Conditioning. International Journal of Molecular Sciences, 2020, 21, 2896.	1.8	38
24	Changes of Metabolic Phenotype of Cardiac Progenitor Cells During Differentiation: Neutral Effect of Stimulation of AMP-Activated Protein Kinase. Stem Cells and Development, 2019, 28, 1498-1513.	1.1	10
25	Studying the Role of AMPK in Cardiac Hypertrophy and Protein Synthesis. Methods in Molecular Biology, 2018, 1732, 321-342.	0.4	7
26	AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nature Communications, 2018, 9, 374.	5.8	179
27	AMP-Activated Protein Kinase and O-ClcNAcylation, Two Partners Tightly Connected to Regulate Key Cellular Processes. Frontiers in Endocrinology, 2018, 9, 519.	1.5	19
28	The Regulation of Insulin-Stimulated Cardiac Glucose Transport via Protein Acetylation. Frontiers in Cardiovascular Medicine, 2018, 5, 70.	1.1	17
29	AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood, 2018, 132, 1180-1192.	0.6	57
30	Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Scientific Reports, 2017, 7, 41166.	1.6	64
31	Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H432-H445.	1.5	29
32	Presenilin 2-Dependent Maintenance of Mitochondrial Oxidative Capacity and Morphology. Frontiers in Physiology, 2017, 8, 796.	1.3	40
33	Principles in the Regulation of Cardiac Metabolism. , 2016, , 57-71.		1
34	O-GlcNAcylation, enemy or ally during cardiac hypertrophy development?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2232-2243.	1.8	62
35	AMPK in Cardiovascular Diseases. Exs, 2016, 107, 179-201.	1.4	30
36	Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Science Advances, 2016, 2, e1600031.	4.7	78

#	Article	IF	CITATIONS
37	Regulation of Carbohydrate Metabolism, Lipid Metabolism, and Protein Metabolism by AMPK. Exs, 2016, 107, 23-43.	1.4	53
38	AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation. Journal of Molecular and Cellular Cardiology, 2016, 91, 188-200.	0.9	110
39	Even is better than odd: one fat may conceal another. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1112-H1114.	1.5	1
40	Glucose Uptake and Its Consequence on Cardiomyocyte Function. , 2015, , 147-155.		0
41	Enhanced Expression of β3-Adrenoceptors in Cardiac Myocytes Attenuates Neurohormone-Induced Hypertrophic Remodeling Through Nitric Oxide Synthase. Circulation, 2014, 129, 451-462.	1.6	125
42	Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovascular Research, 2014, 101, 20-29.	1.8	36
43	Metformin: From Mechanisms of Action to Therapies. Cell Metabolism, 2014, 20, 953-966.	7.2	1,019
44	Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E688-E696.	1.8	75
45	AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1120-H1133.	1.5	96
46	A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1619-H1630.	1.5	46
47	Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKα1. Journal of Molecular and Cellular Cardiology, 2014, 74, 32-43.	0.9	52
48	Differential regulation of eEF2 and p70S6K by AMPKalpha2 in heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 780-790.	1.8	20
49	Connection Between Cardiac Vascular Permeability, Myocardial Edema, and Inflammation During Sepsis. Critical Care Medicine, 2013, 41, e411-e422.	0.4	48
50	AMP-activated Protein Kinase in the Control of Cardiac Metabolism and Remodeling. Current Heart Failure Reports, 2012, 9, 164-173.	1.3	84
51	AMPâ€activated protein kinase activation is associated with an inhibition of fibrotic properties of cardiac fibroblasts. FASEB Journal, 2012, 26, 1059.15.	0.2	0
52	NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1. Cardiovascular Research, 2011, 92, 237-246.	1.8	92
53	AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovascular Research, 2011, 90, 224-233.	1.8	161
54	Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H469-H477.	1.5	48

#	Article	IF	CITATIONS
55	Activation of the cardiac mTOR/p70 ^{S6K} pathway by leucine requires PDK1 and correlates with PRAS40 phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E761-E769.	1.8	52
56	Heart 6-phosphofructo-2-kinase activation by insulin requires PKB (protein kinase B), but not SGK3 (serum- and glucocorticoid-induced protein kinase 3). Biochemical Journal, 2010, 431, 267-275.	1.7	25
57	AMPK: Lessons from transgenic and knockout animals. Frontiers in Bioscience - Landmark, 2009, Volume, 19.	3.0	248
58	Crucial role for LKB1 to AMPKα2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytesâ~†. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 212-219.	1.2	83
59	Insulin signalling in the heart. Cardiovascular Research, 2008, 79, 238-248.	1.8	225
60	AMPKα2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochemical and Biophysical Research Communications, 2008, 376, 677-681.	1.0	57
61	Comparison Between Adenoviral and Retroviral Vectors for the Transduction of the Thymidine Kinase PET Reporter Gene in Rat Mesenchymal Stem Cells. Journal of Nuclear Medicine, 2008, 49, 1836-1844.	2.8	42
62	Dual cardiac contractile effects of the α2-AMPK deletion in low-flow ischemia and reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3136-H3147.	1.5	71
63	Evaluation of the role of protein kinase Cζ in insulin-induced heart 6-phosphofructo-2-kinase activation. Cellular Signalling, 2007, 19, 52-61.	1.7	6
64	Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. Journal of Physiology, 2006, 574, 41-53.	1.3	457
65	Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E780-E788.	1.8	193
66	Role of the α2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2875-H2883.	1.5	80
67	AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H239-H250.	1.5	130
68	6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochemical Journal, 2004, 381, 561-579.	1.7	336
69	Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO Journal, 2003, 22, 4666-4676.	3.5	166
70	The Stimulation of Glycolysis by Hypoxia in Activated Monocytes Is Mediated by AMP-activated Protein Kinase and Inducible 6-Phosphofructo-2-kinase. Journal of Biological Chemistry, 2002, 277, 30778-30783.	1.6	318
71	Insulin and Ischemia Stimulate Glycolysis by Acting on the Same Targets Through Different and Opposing Signaling Pathways. Journal of Molecular and Cellular Cardiology, 2002, 34, 1091-1097.	0.9	90
72	The stimulation of heart glycolysis by increased workload does not require AMP-activated protein kinase but a wortmannin-sensitive mechanism. FEBS Letters, 2002, 531, 324-328.	1.3	41

#	Article	IF	CITATIONS
73	Activation of AMP-Activated Protein Kinase Leads to the Phosphorylation of Elongation Factor 2 and an Inhibition of Protein Synthesis. Current Biology, 2002, 12, 1419-1423.	1.8	415
74	Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. FEBS Journal, 2002, 269, 3751-3759.	0.2	142
75	Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Letters, 2001, 505, 348-352.	1.3	113
76	No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH. Circulation Research, 2001, 88, 513-519.	2.0	61
77	Partial purification and characterization of a wortmannin-sensitive and insulin-stimulated protein kinase that activates heart 6-phosphofructo-2-kinase. Biochemical Journal, 2000, 347, 305-312.	1.7	29
78	Heart 6-Phosphofructo-2-kinase Activation by Insulin Results from Ser-466 and Ser-483 Phosphorylation and Requires 3-Phosphoinositide-dependent Kinase-1, but Not Protein Kinase B. Journal of Biological Chemistry, 1999, 274, 30927-30933.	1.6	63