Predrag S Stanimiroviä

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/7494459/publications.pdf
Version: 2024-02-01

1 Weighted inner inverse for rectangular matrices. Quaestiones Mathematicae, 2022, 45, 11-39. 0.2
Solving Complex-Valued Time-Varying Linear Matrix Equations via QR Decomposition With Applications2 to Robotic Motion Tracking and on Angle-of-Arrival Localization. IEEE Transactions on Neural7.237Networks and Learning Systems, 2022, 33, 3415-3424.
Zeroing Neural Network With Fuzzy Parameter for Computing Pseudoinverse of Arbitrary Matrix. IEEE 6.5 33
Transactions on Fuzzy Systems, 2022, 30, 3426-3435.
Operations Research, 2022, 138, 105582.
A family of varying-parameter finite-time zeroing neural networks for solving time-varying Sylvester
equation and its application. Journal of Computational and Applied Mathematics, 2022, 403, 113826.1.114
$0.5 \quad 2$
$6 \quad \begin{aligned} & \text { Representations and geometric } \\ & \text { Algebra, 2022, 70, 7318-7338. }\end{aligned}$1.4Expressions and properties of weak core inverse. Applied Mathematics and Computation, 2022, 415,$7 \quad 126704$.Fraud detection in publicly traded U.S firms using Beetle Antennae Search: A machine learningapproach. Expert Systems With Applications, 2022, 191, 116148.MPCEP-\$ ${ }^{*}$ \$\$CEPMP-Solutions of Some Restricted Quaternion Matrix Equations. Advances in AppliedClifford Algebras, 2022, 32, 1.
Formation of Fuzzy Patterns in Logical Analysis of Data Using a Multi-Criteria Genetic Algorithm.
Symmetry, 2022, 14, 600.
1.1

5
11 Properties of the CMP inverse and its computation. Computational and Applied Mathematics, 2022, 41, 1. 1.0 5
12 Non-linear Activated Beetle Antennae Search: A novel technique for non-convex tax-aware portfoliooptimization problem. Expert Systems With Applications, 2022, 197, 116631.
A higher-order zeroing neural network for pseudoinversion of an arbitrary time-varying matrix with4.018applications to mobile object localization. Information Sciences, 2022, 600, 226-238.A Single Valued Neutrosophic Extension of the Simple WISP Method. Informatica, 2022, , 635-651.1.5

5
Generalizations of composite inverses with certain image and/or kernel. Applied Mathematics and Computation, 2022, 428, 127155.1.43

Finite-time convergent zeroing neural network for solving time-varying algebraic Riccati equations. Journal of the Franklin Institute, 2022, 359, 10867-10883.
Representations of Quaternion W-MPCEP, W-CEPMP and W-MPCEPMP Inverses. Advances in Applied
Clifford Algebras, 2022, 32, .$0.5 \quad 1$

One-sided weighted outer inverses of tensors. Journal of Computational and Applied Mathematics, 2021, 388, 113293.
$1.1 \quad 9$
25 Solvability of New Constrained Quaternion Matrix Approximation Problems Based on Core-EP Inverses. Advances in Applied Clifford Algebras, 2021, 31, 1.$0.5 \quad 8$
A New Varying-Parameter Design Formula for Solving Time-Varying Problems. Neural Processing Letters, 2021, 53, 107-129.
29 Representations and properties for the MPCEP inverse. Journal of Applied Mathematics and Computing,
2021, 67, 101-130.Design and analysis of recurrent neural network models with nonâ€linear activation functions for
solving timeâ€varying quadratic programming problems. CAAI Transactions on Intelligence Technology,3.425
2021, 6, 394-404.
31 Computing tensor generalized inverses via specialization and rationalization. Revista De La Real0.62
Application of Delaunay Triangulation and Catalan Objects in Steganography. Mathematics, 2021, 9,1.17
33 Representations for the weak group inverse. Applied Mathematics and Computation, 2021, 397, 125957. 1.4 13
37
38

$$
\begin{aligned}
& \text { Continuous-Time Varying Complex QR Decomposition via Zeroing Neural Dynamics. Neural Processing } \\
& \text { Letters, 2021, 53, 3573-3590. }
\end{aligned}
$$

Properties and computation of continuous-time solutions to linear systems. Applied Mathematics and

Computation, 2021, 405, 126242. | Representations and symbolic computation of generalized inverses over fields. Applied Mathematics |
| :--- |
| and Computation, 2021, 406, 126287. |

45 Weighted composite outer inverses. Applied Mathematics and Computation, 2021, 411, 126493.
Comparative Analysis of the Simple WISP and Some Prominent MCDM Methods: A Python Approach.
Axioms, 2021, 10, 347.
$0.9 \quad 5$
Outer and (b,c) inverses of tensors. Linear and Multilinear Algebra, 2020, 68, 940-971.0.528
49 Varying-parameter Zhang neural network for approximating some expressions involving outer inverses. Optimization Methods and Software, 2020, 35, 1304-1330. 1.6 1550 Higher-Order ZNN Dynamics. Neural Processing Letters, 2020, 51, 697-721.2.015
Complex Varying-Parameter Zhang Neural Networks for Computing Core and Core-EP Inverse. Neural
Processing Letters, 2020, 51, 1299-1329. 2.0 23
Processing Letters, 2020, 51, 1299-1329.

Modified Variational Iteration Algorithm-II: Convergence and Applications to Diffusion Models.
Complexity, 2020, 2020, 1-14.

New Perspective on the Conventional Solutions of the Nonlinear Time-Fractional Partial Differential Equations. Complexity, 2020, 2020, 1-10.

A Novel Extension of the TOPSIS Method Adapted for the Use of Single-Valued Neutrosophic Sets and
Hamming Distance for E-Commerce Development Strategies Selection. Symmetry, 2020, 12, 1263.

Solvability of some constrained matrix approximation problems using core-EP inverses. Computational and Applied Mathematics, 2020, 39, 1.

A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations.
Results in Physics, 2020, 19, 103462.
2.0

Optimal Portfolio Management for Engineering Problems Using Nonconvex Cardinality Constraint: A
Computing Perspective. IEEE Access, 2020, 8, 57437-57450.

Computation of outer inverses of tensors using the QR decomposition. Computational and Applied
Mathematics, 2020, 39, 1.

Time-varying minimum-cost portfolio insurance under transaction costs problem via Beetle Antennae
Search Algorithm (BAS). Applied Mathematics and Computation, 2020, 385, 125453.

63 New classes of more general weighted outer inverses. Linear and Multilinear Algebra, 2020, , 1-26.

Characterizations, iterative method, sign pattern and perturbation analysis for the DMP inverse with its applications. Applied Mathematics and Computation, 2020, 378, 125196.

Varyingâ€parameter finiteâ€time zeroing neural network for solving linear algebraic systems. Electronics
Letters, 2020, 56, 810-813.

A Hybrid Firefly and Multi-Strategy Artificial Bee Colony Algorithm. International Journal of Computational Intelligence Systems, 2020, 13, 810.

A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020,
28, 1573-1624.

Authentication Based on the Image Encryption using Delaunay Triangulation and Catalan Objects. Acta Polytechnica Hungarica, 2020, 17, 207-224.

Zeroing Neural Network Based on the Equation AXA = A. Lecture Notes in Computer Science, 2019, ,
213-224.

An Application of Computer Algebra and Dynamical Systems. Lecture Notes in Computer Science, 2019, , 225-236.

Further efficient hyperpower iterative methods for the computation of generalized inverses
71 \$\$A_\{T,S\}^\{(2)\}\$\$. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A:
0.6 Matematicas, 2019, 113, 3323-3339.

Perturbation theory for Mooreâe"Penrose inverse of tensor via Einstein product. Computational and
Applied Mathematics, 2019, 38, 1.

73	Characterizations, approximation and perturbations of the core-EP inverse. Applied Mathematics and Computation, 2019, 359, 404-417.	1.4	58
74	A class of quadratically convergent iterative methods. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 3125-3146.	0.6	6
75	An improved algorithm for basis pursuit problem and its applications. Applied Mathematics and Computation, 2019, 355, 385-398.	1.4	13
76	Improved GNN Models for Constant Matrix Inversion. Neural Processing Letters, 2019, 50, 321-339.	2.0	18
77	Integration enhanced and noise tolerant ZNN for computing various expressions involving outer inverses. Neurocomputing, 2019, 329, 129-143.	3.5	43
78	Inversion and pseudoinversion of block arrowhead matrices. Applied Mathematics and Computation, 2019, 341, 379-401.	1.4	9
79	Complex ZNN for computing time-varying weighted pseudo-inverses. Applicable Analysis and Discrete Mathematics, 2019, 13, 131-164.	0.3	3
80	Modified discrete iterations for computing the inverse and pseudoinverse of the time-varying matrix. Neurocomputing, 2018, 289, 155-165.	3.5	30
81	Gradient neural dynamics for solving matrix equations and their applications. Neurocomputing, 2018, 306, 200-212.	3.5	45

92 An improved chaotic firefly algorithm for global numerical optimization. International Journal of
95

> A hyperpower iterative method for computing the generalized Drazin inverse of Banach algebra
> element. Sadhana - Academy Proceedings in Engineering Sciences, 2017, 42, 625-630.
$0.8 \quad 4$

96 Nonlinearly Activated Recurrent Neural Network for Computing the Drazin Inverse. Neural
Processing Letters, 2017, 46, 195-217.
2.0

28
97 Recurrent neural network for computing the W-weighted Drazin inverse. Applied Mathematics and Computation, 2017, 300, 1-20.
$1.4 \quad 25$
A Family of Iterative Methods with Accelerated Convergence for Restricted Linear System ofEquations. Mediterranean Journal of Mathematics, 2017, 14, 1.
$0.4 \quad 4$
Representations and properties of the $<\mathrm{i}>\mathrm{W}</ \mathrm{i}>-$ Weighted Drazin inverse. Linear and Multilinear
Algebra, 2017, 65, 1080-1096.
$0.5 \quad 24$
Application of Heuristic and Metaheuristic Algorithms in Solving Constrained Weber Problem withFeasible Region Bounded by Arcs. Mathematical Problems in Engineering, 2017, 2017, 1-13.
101 Conditions for Existence, Representations, and Computation of Matrix Generalized Inverses.
Complexity, 2017, 2017, 1-27.
0.9 19
102 ZNN models for computing matrix inverse based on hyperpower iterative methods. Filomat, 2017, 31,2999-3014.0.214
103 Computing the Pseudoinverse of Specific Toeplitz Matrices Using Rank-One Updates. Mathematical
Problems in Engineering, 2016, 2016, 1-16.0.62Neural network approach to computing outer inverses based on the full rank representation. Linear0.4104 Algebra and Its Applications, 2016, 501, 344-362.16$0.4 \quad 16$
Complex Neural Network Models for Time-Varying Drazin Inverse. Neural Computation, 2016, 28,1.330
109 Computing outer inverses by scaled matrix iterations. Journal of Computational and Applied 1.1 Mathematics, 2016, 296, 89-101.

$$
5
$$

$0.2 \quad 2$0.22
111 A Transformation of Accelerated Double Step Size Method for Unconstrained Optimization. 0.6 10
Mathematical Problems in Engineering, 2015, 2015, 1-8. $0.6 \quad 10$
A Novel Iterative Method for Polar Decomposition and Matrix Sign Function. Discrete Dynamics in0.5
113 Recent Theories and Applications in Approximation Theory. Scientific World Journal, The, 2015, 2015,
1-2. 0.8
Application of the Least Squares Solutions in Image Deblurring. Mathematical Problems in Engineering, 2015, 2.015, 1-. 18.
alting $=$ SII.git overtiow $=$ scroll $><$ mmi:mrow $\rangle\langle$ mmintmostretchy="false"> \{<|mml:mo>mml:mn2<|mml:mn>mml:mtext,<|mml:mtext>mml:msupmml:mrow mml:mn3<|mml:mn><
115 stretchy="false">\}</mml:mo></mml:mrow></mml:math > and <mml:math
xmlns:mml="http:|/www.w3.org/1998/Math/MathML" altimg="si2.gif"1.45$0.4 \quad 21$
On hyperpower family of iterations for computing outer inverses possessing high efficiencies. Linear
Algebra and Its Applications, 2015, 484, 477-495.
Generalized inverse restricted by the normal Drazin equation. Linear and Multilinear Algebra, 2015, 63, $117 \quad \begin{aligned} & \text { Generaliz } \\ & 893-913 .\end{aligned}$
119 Recurrent Neural Network for Computing the Drazin Inverse. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 2830-2843.
7.2 78
120 Recurrent Neural Network Approach Based on the Integral Representation of the Drazin Inverse.1.3

127	A note on the stability of a<mml:math xmlns:mml="http:\|/www.w3.org/1998/Math/MathML" altimg="sil.gif" display="inline" overflow="scroll">mml:mip</mml:mi></mml:math>th order iteration for finding generalized inverses. Applied Mathematics Letters, 2014, 28, 77-81.	1.5	13
128	Decomposition of Catalan numbers and convex polygon triangulations. International Journal of Computer Mathematics, 2014, 91, 1315-1328.	1.0	8
129	Minimization of quadratic forms using the Drazin-inverse solution. Linear and Multilinear Algebra, 2014, 62, 252-266.	0.5	3
130	Minimal properties of the Drazin-inverse solution of a matrix equation. Filomat, 2014, 28, 383-395.	0.2	0
131	Removal of blur in images based on least squares solutions. Mathematical Methods in the Applied Sciences, 2013, 36, 2280-2296.	1.2	16
132	An accelerated iterative method for computing weighted Mooreâ€"Penrose inverse. Applied Mathematics and Computation, 2013, 222, 365-371.	1.4	20
133	Scalar correction method for finding least-squares solutions on Hilbert spaces and its applications. Applied Mathematics and Computation, 2013, 219, 9639-9651.	1.4	1

134 An Approach to the Multi-facility Weber Problem with Special Metrics. , 2013, , 0
135 Gradient methods for computing the Drazin-inverse solution. Journal of Computational and Applied $1.1 \quad 15$
Mathematics, 2013, 253, 255-263.
Gaussâ€"Jordan elimination method for computing outer inverses. Applied Mathematics andComputation, 2013, 219, 4667-4679.
1.4 43
137 Environmental and Economic Criteria in Ranking of Copper Concentrates. Environmental Modeling 1.2
6
A Higher Order Iterative Method for Computing the Drazin Inverse. Scientific World Journal, The,$138 \quad \begin{aligned} & \text { A Higher Order Iter } \\ & 2013,2013,1-11 .\end{aligned}$
0.8 22Application of the partitioning method to specific Toeplitz matrices. International Journal of Applied$139 \begin{aligned} & \text { Application of the partitioning method to specific Toeplitz } \\ & \text { Mathematics and Computer Science, 2013, 23, 809-821. }\end{aligned}$
1.5
3
140 On the Simplex Algorithm Initializing. Abstract and Applied Analysis, 2012, 2012, 1-15.0.3Determinantal Representation of Outer Inverses in Riemannian Space. Algebra Colloquium, 2012, 19,
$877-892$.877-892.
0.1 3141
142 A Blending Problem in Copper Production. Environmental Modeling and Assessment, 2012, 17, 495-503. 1.2 3
143 Computation, 2012, 218, 10321-10333.1.444

145altimg="sil.gif" overflow="scroll stretchy="false"	

146 Application of the pseudoinverse computation in reconstruction of blurred images. Filomat, 2012, 26,
Inversion of the generalized Fibonacci matrix by convolution. International Journal of Computer
Mathematics, 2011, 88, 1519-1532.

Comments on some recent results concerning $\{2,3\}$	and $\{2,4\}$-generalized inverses. Applied
Mathematics and Computation, 2011, $218,1512-1514$.	

149	Modified SMS method for computing outer inverses of Toeplitz matrices. Applied Mathematics and Computation, 2011, 218, 3131-3143.	1.4	6
150	Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems. Journal of Optimization Theory and Applications, 2011, 151, 304-320.	0.8	12
151	On the Leverrier-Faddeev algorithm for computing theÂMoore-Penrose inverse. Journal of Applied Mathematics and Computing, 2011, 35, 135-141.	1.2	1

152 Inversion of Catalan matrix plus one. Journal of Applied Mathematics and Computing, 2011, 35, 497-505. 1.20
153 Iterative method for computing the Mooreấ"Penrose inverse based on Penrose equations. Journal of 1.1
154 Effective partitioning method for computing generalized inverses and their gradients. Applied Mathematics and Computation, 2011, 217, 7588-7598.

$1.4 \quad 0$
155 Full-rank representations of $\{2,4\},\{2,3\}$-inverses and successive matrix squaring algorithm. Applied

$1.4 \quad 16$ Mathematics and Computation, 2011, 217, 9358-9367.
Computation of generalized inverses using PHP/MySQL environment. International Journal of 1.0 3 Computer Mathematics, 2011, 88, 2429-2446.
$0.4 \quad 10$SINGULAR CASE OF GENERALIZED FIBONACCI AND LUCAS MATRICES. Journal of the Korean Mathematical
159 Accelerated gradient descent methods with line search. Numerical Algorithms, 2010, 54, 503-520. 1.1 39
Inverting linear combinations of identity and generalized Catalan matrices. Linear Algebra and Its
160 Applications, 2010, 433, 1472-1480. Applications, 2010, 433, 1472-1480.
Symbolic implementation of interior point method for linear programming problem. Internationa
Journal of Computer Mathematics, 2010, 87, 2173-2187.

Catalan matrix and related combinatorial identities. Applied Mathematics and Computation, 2009, 215,
167 Generalized matrix inversion is not harder than matrix multiplication. Journal of Computational and
Applied Mathematics, 2009, 230, 270-282
1.1
Applied Mathematics, 2009, 230, 270-282.
28

168 Multiplicative parameters in gradient descent methods. Filomat, 2009, 23, 23-36.
169 Visualization in optimization with Mathematica. Filomat, 2009, 23, 68-81. 0.2
170 Effective partitioning method for computing weighted 1.4
171 A generalization of Fibonacci and Lucas matrices. Discrete Applied Mathematics, 2008, 156, 2606-2619. 0.5 19
Implementation of polynomial multi-objective optimization in Mathematica. Structural and
$1.7 \quad 5$
172 Multidisciplinary Optimization, 2008, 36, 411-428.
Symbolic and recursive computation of different types of generalized inverses. Applied Mathematics
and Computation, 2008, 199, 349-367.1.411Successive matrix squaring algorithm for computing outer inverses. Applied Mathematics and
1.462
Computation, 2008, 203, 19-29. 1741.029
Computing generalized inverses using LU factorization of matrix product. International Journal of 175 Computing generalized inverses using Luth athematics, 2008, 85, 1865-1878.Symbolic computation of weighted Mooreâ€"Penrose inverse using partitioning method. Applied1.427Mathematics and Computation, 2007, 189, 615-640.Interpolation algorithm for computing Drazin inverse of polynomial matrices. Linear Algebra and ItsApplications, 2007, 422, 526-539.
0.43and Computing, 2007, 24, 81-94.

181 Interpolation algorithm of Leverrierâ $€^{\prime \prime} F a d d e v ~ t y p e ~ f o r ~ p o l y n o m i a l ~ m a t r i c e s . ~ N u m e r i c a l ~ A l g o r i t h m s, ~$
$2006,42,345-361$.
$0.1 \quad 9$
182 Adjoint Mappings and Inverses of Matrices. Algebra Colloquium, 2006, 13, 421-432.

Iterative methods for computing generalized inverses related with optimization methods. Journal of the Australian Mathematical Society, 2005, 78, 257-272.

Stabilization of Mehrotra's primalâ $€^{\prime \prime}$ dual algorithm and its implementation. European Journal of Operational Research, 2005, 165, 598-609.
3.5

Symbolic computation of the Mooreâ€ "Penrose inverse using a partitioning method. International Journal of Computer Mathematics, 2005, 82, 355-367.

Some useful MATHEMATICA teaching examples. Facta Universitatis - Series Electronics and Energetics, 2005, 18, 329-344.

187 Reverse polish notation method. International Journal of Computer Mathematics, 2004, 81, 273-284.
1.0

A modification of gradient method of convex programming and its implementation. Journal of Applied
Mathematics and Computing, 2004, 16, 91-104.

The representation and approximations of outer generalized inverses. Acta Mathematica Hungarica,
2004, 104, 1-26.

Partitioning method for rational and polynomial matrices. Applied Mathematics and Computation, 2004, 155, 137-163.

191 A problem in computation of pseudoinverses. Applied Mathematics and Computation, 2003, 135, 443-469.
1.4

4

192 A finite algorithm for generalized inverses of polynomial and rational matrices. Applied Mathematics and Computation, 2003, 144, 199-214.

A non-recursive algorithm for polygon triangulation. Yugoslav Journal of Operations Research, 2003, 13, 61-67.
0.5

0

194 Several modifications of simplex method. Filomat, 2003, , 169-176.
0.2

Computing determinantal representation of generalized inverses. Korean Journal of Computational
0.2
and Applied Mathematics, 2002, 9, 349-359.

On the Computation of the Drazin Inverse of a Polynomial Matrix. IFAC Postprint Volumes IPPV |
International Federation of Automatic Control, 2001, 34, 225-230.
0.4

7

Two direct methods in linear programming. European Journal of Operational Research, 2001, 131,
417-439.
3.5

37
200 Limit representations of generalized inverses and related methods. Applied Mathematics and 1.4 29 Computation, 1999, 103, 51-68.

