Anna N Bukiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7494397/publications.pdf

Version: 2024-02-01

361045 360668 1,497 66 20 35 citations h-index g-index papers 67 67 67 1035 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Regulation of BK Channels by Phosphatidylinositol 4,5-Bisphosphate as a Novel Signaling Pathway. Journal of General Physiology, 2008, 132, 13-28.	0.9	90
2	Multiple Cholesterol Recognition/Interaction Amino Acid Consensus (CRAC) Motifs in Cytosolic C Tail of Slo1 Subunit Determine Cholesterol Sensitivity of Ca2+- and Voltage-gated K+ (BK) Channels. Journal of Biological Chemistry, 2012, 287, 20509-20521.	1.6	82
3	\hat{l}^21 (KCNMB1) Subunits Mediate Lithocholate Activation of Large-Conductance Ca2+-Activated K+ Channels and Dilation in Small, Resistance-Size Arteries. Molecular Pharmacology, 2007, 72, 359-369.	1.0	79
4	Specificity of cholesterol and analogs to modulate BK channels points to direct sterol–channel protein interactions. Journal of General Physiology, 2011, 137, 93-110.	0.9	78
5	Large conductance, calcium- and voltage-gated potassium (BK) channels: Regulation by cholesterol. , 2012, 135, 133-150.		74
6	Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Archiv European Journal of Physiology, 2018, 470, 1271-1289.	1.3	73
7	An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9313-9318.	3.3	67
8	The BK channel accessory β ₁ subunit determines alcoholâ€induced cerebrovascular constriction. FEBS Letters, 2009, 583, 2779-2784.	1.3	61
9	Smooth Muscle Cholesterol Enables BK \hat{I}^21 Subunit-Mediated Channel Inhibition and Subsequent Vasoconstriction Evoked by Alcohol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2410-2423.	1.1	49
10	The steroid interaction site in transmembrane domain 2 of the large conductance, voltage- and calcium-gated potassium (BK) channel accessory \hat{I}^21 subunit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20207-20212.	3.3	45
11	The second transmembrane domain of the large conductance, voltage―and calciumâ€gated potassium channel <i>β</i> ₁ subunit is a lithocholate sensor. FEBS Letters, 2008, 582, 673-678.	1.3	41
12	Channel β2–4 subunits fail to substitute for β1 in sensitizing BK channels to lithocholate. Biochemical and Biophysical Research Communications, 2009, 390, 995-1000.	1.0	40
13	Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior. Frontiers in Physiology, 2014, 5, 466.	1.3	40
14	Cerebrovascular Dilation via Selective Targeting of the Cholane Steroid-Recognition Site in the BK Channel $\langle i \rangle \hat{l}^2 \langle i \rangle 1$ -Subunit by a Novel Nonsteroidal Agent. Molecular Pharmacology, 2013, 83, 1030-1044.	1.0	38
15	Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. Journal of Biological Chemistry, 2017, 292, 6135-6147.	1.6	37
16	Hypercholesterolemia Induces Up-regulation of KACh Cardiac Currents via a Mechanism Independent of Phosphatidylinositol 4,5-Bisphosphate and Gl^2l^3 . Journal of Biological Chemistry, 2012, 287, 4925-4935.	1.6	36
17	Lipid regulation of BK channel function. Frontiers in Physiology, 2014, 5, 312.	1.3	35
18	Maternal alcohol exposure during mid-pregnancy dilates fetal cerebral arteries via endocannabinoid receptors. Alcohol, 2017, 61, 51-61.	0.8	33

#	Article	IF	Citations
19	Structural determinants of monohydroxylated bile acids to activate \hat{l}^21 subunit-containing BK channels. Journal of Lipid Research, 2008, 49, 2441-2451.	2.0	28
20	Dietary Cholesterol Protects Against Alcoholâ€Induced Cerebral Artery Constriction. Alcoholism: Clinical and Experimental Research, 2014, 38, 1216-1226.	1.4	28
21	Common structural features of cholesterol binding sites in crystallized soluble proteins. Journal of Lipid Research, 2017, 58, 1044-1054.	2.0	28
22	Fetal Cerebral Circulation as Target of Maternal Alcohol Consumption. Alcoholism: Clinical and Experimental Research, 2018, 42, 1006-1018.	1.4	23
23	Cholesterol increases the open probability of cardiac KACh currents. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2406-2413.	1.4	22
24	Cholesterol intake and statin use regulate neuronal G protein-gated inwardly rectifying potassium channels. Journal of Lipid Research, 2019, 60, 19-29.	2.0	19
25	The Effect of Prenatal Alcohol Exposure on Fetal Growth and Cardiovascular Parameters in a Baboon Model of Pregnancy. Reproductive Sciences, 2018, 25, 1116-1123.	1,1	19
26	Distinct Sensitivity of Slo1 Channel Proteins to Ethanol. Molecular Pharmacology, 2013, 83, 235-244.	1.0	18
27	Regulation of BK Channel Activity by Cholesterol and Its Derivatives. Advances in Experimental Medicine and Biology, 2019, 1115, 53-75.	0.8	18
28	Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P 2. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1233-1241.	1.4	17
29	Calcium―and Voltageâ€Gated Potassium (BK) Channel Activators in the 5î²â€Cholanic Acidâ€3αâ€ol Analogue Series with Modifications in the Lateral Chain. ChemMedChem, 2012, 7, 1784-1792.	1.6	16
30	Activation of Calcium- and Voltage-gated Potassium Channels of Large Conductance by Leukotriene B4. Journal of Biological Chemistry, 2014, 289, 35314-35325.	1.6	16
31	Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle. Biochemical Pharmacology, 2017, 145, 81-93.	2.0	16
32	Distinct mechanisms underlying cholesterol protection against alcohol-induced BK channel inhibition and resulting vasoconstriction. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1756-1766.	1.2	15
33	Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction. Journal of Pharmacology and Experimental Therapeutics, 2015, 356, 106-115.	1.3	14
34	Fetal Cerebral Artery Mitochondrion as Target of Prenatal Alcohol Exposure. International Journal of Environmental Research and Public Health, 2019, 16, 1586.	1.2	14
35	Extra-endothelial TRPV1 channels participate in alcohol and caffeine actions on cerebral artery diameter. Alcohol, 2018, 73, 45-55.	0.8	13
36	Type 2 ryanodine receptors are highly sensitive to alcohol. FEBS Letters, 2014, 588, 1659-1665.	1.3	12

3

#	Article	IF	Citations
37	Celastrol Dilates and Counteracts Ethanol-Induced Constriction of Cerebral Arteries. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 247-257.	1.3	12
38	Cholesterol activates BK channels by increasing KCNMB1 protein levels in the plasmalemma. Journal of Biological Chemistry, 2021, 296, 100381.	1.6	12
39	Differential distribution and functional impact of BK channel beta1 subunits across mesenteric, coronary, and different cerebral arteries of the rat. Pflugers Archiv European Journal of Physiology, 2017, 469, 263-277.	1.3	11
40	Enrichment of Mammalian Tissues and Xenopus Oocytes with Cholesterol. Journal of Visualized Experiments, 2020, , .	0.2	11
41	Regulation of Ca2+-Sensitive K+ Channels by Cholesterol and Bile Acids via Distinct Channel Subunits and Sites. Current Topics in Membranes, 2017, 80, 53-93.	0.5	10
42	Molecular Determinants of Cholesterol Binding to Soluble and Transmembrane Protein Domains. Advances in Experimental Medicine and Biology, 2019, 1135, 47-66.	0.8	10
43	Design and synthesis of hydroxy-alkynoic acids and their methyl esters as novel activators of BK channels. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3427-3430.	1.0	9
44	Age-Dependent Susceptibility to Alcohol-Induced Cerebral Artery Constriction. Journal of Drug and Alcohol Research, 2016, 5, 1-12.	0.9	9
45	A molecular switch controls the impact of cholesterol on a Kir channel. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109431119.	3.3	9
46	Multi-generational pharmacophore modeling for ligands to the cholane steroid-recognition site in the \hat{l}^21 modulatory subunit of the BKCa channel. Journal of Molecular Graphics and Modelling, 2014, 54, 174-183.	1.3	8
47	Proteomic Analysis of Baboon Cerebral Artery Reveals Potential Pathways of Damage by Prenatal Alcohol Exposure*. Molecular and Cellular Proteomics, 2019, 18, 294-307.	2.5	8
48	Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. Handbook of Experimental Pharmacology, 2017, 248, 281-309.	0.9	7
49	Tyrosine 450 in the Voltage- and Calcium-Gated Potassium Channel of Large Conductance Channel Pore-Forming (slo1) Subunit Mediates Cholesterol Protection against Alcohol-Induced Constriction of Cerebral Arteries. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 234-244.	1.3	7
50	Gestational Age-Dependent Interplay between Endocannabinoid Receptors and Alcohol in Fetal Cerebral Arteries. , 2018, 08, .		6
51	Physiology of the Endocannabinoid System During Development. Advances in Experimental Medicine and Biology, 2019, 1162, 13-37.	0.8	5
52	BK channel-forming slo1 proteins mediate the brain artery constriction evoked by the neurosteroid pregnenolone. Neuropharmacology, 2021, 192, 108603.	2.0	5
53	Cholesterol Inhibition of Slo1 Channels Is Calcium-Dependent and Can Be Mediated by Either High-Affinity Calcium-Sensing Site in the Slo1 Cytosolic Tail. Molecular Pharmacology, 2022, 101, 132-143.	1.0	5
54	Cholesterol-induced Trafficking of beta1 Subunits Switches Modulation of BK Function by this Steroid from Inhibition to Activation. Biophysical Journal, 2020, 118, 109a-110a.	0.2	3

#	Article	IF	CITATIONS
55	Cholesterol antagonism of alcohol inhibition of smooth muscle BK channel requires cell integrity and involves a protein kinase C-dependent mechanism(s). Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158874.	1.2	3
56	Large conductance voltage- and calcium-gated potassium channels (BK) in cerebral artery myocytes of perinatal fetal primates share several major characteristics with the adult phenotype. PLoS ONE, 2018, 13, e0203199.	1.1	2
57	Cannabinoid Interactions with Proteins: Insights from Structural Studies. Advances in Experimental Medicine and Biology, 2019, 1162, 39-50.	0.8	2
58	Common laboratory research methods for detection and quantification of cholesterol. , 2022, , 259-288.		2
59	Sodium 3-Hydroxyolean-12-en-30-Oate is a Novel and Selective Activator of \hat{l}^21 Subunit-Containing BK Channels and thus Cerebral Artery Dilator. Biophysical Journal, 2012, 102, 133a-134a.	0.2	1
60	Prenatal Alcohol Exposure, Anesthesia, and Fetal Loss in Baboon Model of Pregnancy. Journal of Drug and Alcohol Research, 2018, 7, .	0.9	1
61	Approaches for modifying cellular cholesterol levels and their application to mechanistic studies: Examples from the ion channel field., 2022,, 289-340.		1
62	Discovery of agonist–antagonist pairs for the modulation of Ca [2]+ and voltage-gated K+ channels of large conductance that contain beta1 subunits. Bioorganic and Medicinal Chemistry, 2022, 68, 116876.	1.4	1
63	Modulation of Neuronal GIRK Channels by Cholesterol. FASEB Journal, 2015, 29, 574.28.	0.2	0
64	Membrane Lipids and Modulation of Vascular Smooth Muscle Ion Channels. , 2016, , 349-380.		0
65	Temporal Requirement for the Protective Effect of Dietary Cholesterol against Alcohol-Induced Vasoconstriction. Journal of Drug and Alcohol Research, 2020, 9, .	0.9	0
66	Modification of vascular receptor pharmacology by cholesterol: From molecular determinants to impact on arterial function., 2022,, 825-851.		0