M Clara De Lacy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7494183/publications.pdf

Version: 2024-02-01

567281 552781 31 668 15 26 citations h-index g-index papers 32 32 32 706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Real-time cycle slip detection in triple-frequency GNSS. GPS Solutions, 2012, 16, 353-362.	4.3	82
2	goGPS: open-source MATLAB software. GPS Solutions, 2016, 20, 595-603.	4.3	77
3	The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem. Journal of Geodesy, 2008, 82, 527-542.	3.6	71
4	On the effects of the ionospheric disturbances on precise point positioning at equatorial latitudes. GPS Solutions, 2011, 15, 381-390.	4.3	47
5	Active faulting in the frontal Rif Cordillera (Fes region, Morocco): Constraints from GPS data. Journal of Geodynamics, 2014, 77, 110-122.	1.6	37
6	Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: A feasible option in geomatics. Measurement: Journal of the International Measurement Confederation, 2019, 137, 168-178.	5.0	36
7	Active shallow extension in central and eastern Betic Cordillera from CGPS data. Tectonophysics, 2015, 663, 290-301.	2.2	33
8	Topo-Iberia project: CGPS crustal velocity field in the Iberian Peninsula and Morocco. GPS Solutions, 2015, 19, 287-295.	4.3	29
9	Active rollback in the Gibraltar Arc: Evidences from CGPS data in the western Betic Cordillera. Tectonophysics, 2015, 663, 310-321.	2.2	28
10	Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling. Sensors, 2018, 18, 1369.	3.8	27
11	How Much Nubiaâ€Eurasia Convergence Is Accommodated by the NE End of the Eastern Betic Shear Zone (SE Spain)? Constraints From GPS Velocities. Tectonics, 2019, 38, 1824-1839.	2.8	27
12	Geodetic measurements of crustal deformation on NW–SE faults of the Betic Cordillera, southern Spain, 1999–2001. Journal of Geodynamics, 2003, 35, 259-272.	1.6	20
13	Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain). Sensors, 2010, 10, 3504-3518.	3.8	18
14	The Bayesian approach applied to GPS ambiguity resolution. A mixture model for the discrete-real ambiguities alternative. Journal of Geodesy, 2002, 76, 82-94.	3.6	16
15	Testing precise positioning using RTK and NRTK corrections provided by MAC and VRS approaches in SE Spain. Journal of Spatial Science, 2011, 56, 169-184.	1.5	16
16	Monitoring of vertical deformations by means high-precision geodetic levelling. Test case: The Arenoso dam (South of Spain). Journal of Applied Geodesy, 2017, 11, 31-41.	1.1	15
17	Surveying at the limits of local RTK networks: Test results from the perspective of high accuracy users. International Journal of Applied Earth Observation and Geoinformation, 2011, 13, 256-264.	2.8	13
18	Comparing recent geopotential models in Andalusia (Southern Spain). Studia Geophysica Et Geodaetica, 2006, 50, 619-631.	0.5	12

#	Article	IF	CITATIONS
19	Comparing RTK positioning from updated REGAM and MERISTEMUM CORS networks in Southeast Spain. Journal of Applied Geodesy, $2011, 5, \ldots$	1.1	11
20	A Method for the Ionospheric Delay Estimation and Interpolation in a Local GPS Network. Studia Geophysica Et Geodaetica, 2005, 49, 63-84.	0.5	10
21	Evaluation of NRTK positioning using the RENEP and rap networks on the southern border region of Portugal and Spain. Acta Geodaetica Et Geophysica Hungarica, 2012, 47, 52-65.	0.4	7
22	Assessing the accuracy of NRTK altimetric positioning for precision agriculture: test results in an olive grove environment in Southeast Spain. Precision Agriculture, 2019, 20, 461-476.	6.0	7
23	Multifrequency algorithms for precise point positioning: MAP3. GPS Solutions, 2014, 18, 355.	4.3	6
24	ANDALUSGeoid2002: The New Gravimetric Geoid Model of Andalusia (Southern Spain). Studia Geophysica Et Geodaetica, 2003, 47, 511-520.	0.5	5
25	The Campo de Dalias GNSS Network Unveils the Interaction between Roll-Back and Indentation Tectonics in the Gibraltar Arc. Sensors, 2022, 22, 2128.	3.8	5
26	A Gravimetric Geoid Computation and Comparison with GPS Results in Northern Andalusia (Spain). Studia Geophysica Et Geodaetica, 2001, 45, 55-66.	0.5	4
27	Impact of tropospheric modelling on GNSS vertical precision: an empirical analysis based on a local active network. International Journal of Digital Earth, 2018, 11, 880-896.	3.9	3
28	Geodetic Control of the Present Tectonic Deformation of the Betic Cordillera (Spain)., 2006,, 209-216.		1
29	Perspective of Galileo in Geophysical Monitoring: The Geolocalnet Project. Signals and Communication Technology, 2008, , 369-385.	0.5	1
30	Análisis de la vulnerabilidad geotécnica en las obras de ingenierÃa de la región niquelÃfera de HolguÃn a partir del empleo de métodos geodésicos. BoletÃn De Ciencias De La Tierra, 2019, , 5-13.	0.1	0
31	Is GNSS real-time positioning a reliable option to validate erosion studies at olive grove environments?. Spanish Journal of Agricultural Research, 2020, 18, e0204.	0.6	0