Janne Haapanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7493844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrafast Processing of Hierarchical Nanotexture for a Transparent Superamphiphobic Coating with Extremely Low Rollâ€Off Angle and High Impalement Pressure. Advanced Materials, 2018, 30, e1706529.	21.0	117
2	Paper-Based Microfluidics: Fabrication Technique and Dynamics of Capillary-Driven Surface Flow. ACS Applied Materials & Interfaces, 2014, 6, 20060-20066.	8.0	107
3	Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Applied Physics Letters, 2017, 110, .	3.3	57
4	Icephobicity of Slippery Liquid Infused Porous Surfaces under Multiple Freeze–Thaw and Ice Accretion–Detachment Cycles. Advanced Materials Interfaces, 2018, 5, 1800828.	3.7	57
5	Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Journal of Colloid and Interface Science, 2016, 468, 21-33.	9.4	40
6	Superamphiphobic overhang structured coating on a biobased material. Applied Surface Science, 2016, 389, 135-143.	6.1	38
7	ToF-SIMS Analysis of UV-Switchable TiO ₂ -Nanoparticle-Coated Paper Surface. Langmuir, 2013, 29, 3780-3790.	3.5	36
8	Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using Liquid Flame Spray. Journal of Aerosol Science, 2012, 52, 57-68.	3.8	34
9	One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper. Applied Surface Science, 2017, 420, 558-565.	6.1	32
10	Wettability conversion on the liquid flame spray generated superhydrophobic TiO2 nanoparticle coating on paper and board by photocatalytic decomposition of spontaneously accumulated carbonaceous overlayer. Cellulose, 2013, 20, 391-408.	4.9	31
11	Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung, 2016, 70, 527-537.	1.9	27
12	Binary TiO2/SiO2 nanoparticle coating for controlling the wetting properties of paperboard. Materials Chemistry and Physics, 2015, 149-150, 230-237.	4.0	26
13	Antimicrobial characterization of silver nanoparticle-coated surfaces by "touch test" method. Nanotechnology, Science and Applications, 2017, Volume 10, 137-145.	4.6	26
14	Wear resistance of nanoparticle coatings on paperboard. Wear, 2013, 307, 112-118.	3.1	22
15	Long-term corrosion protection by a thin nano-composite coating. Applied Surface Science, 2015, 357, 2333-2342.	6.1	21
16	Characterization of bidisperse magnetorheological fluids utilizing maghemite (<i>l̂³</i> -Fe ₂ O ₃) nanoparticles synthetized by flame spray pyrolysis. Smart Materials and Structures, 2017, 26, 095004.	3.5	20
17	Liquid Flame Spray—A Hydrogen-Oxygen Flame Based Method for Nanoparticle Synthesis and Functional Nanocoatings. KONA Powder and Particle Journal, 2017, 34, 141-154.	1.7	20
18	Effect of plasma coating on antibacterial activity of silver nanoparticles. Thin Solid Films, 2019, 672, 75-82.	1.8	19

JANNE HAAPANEN

#	Article	IF	CITATIONS
19	Aerosol analysis of residual and nanoparticle fractions from spray pyrolysis of poorly volatile precursors. AICHE Journal, 2017, 63, 881-892.	3.6	13
20	Review on Liquid Flame Spray in paper converting: Multifunctional superhydrophobic nanoparticle coatings. Nordic Pulp and Paper Research Journal, 2014, 29, 747-759.	0.7	11
21	Compressibility of porous TiO2 nanoparticle coating on paperboard. Nanoscale Research Letters, 2013, 8, 444.	5.7	10
22	High-speed production of antibacterial fabrics using liquid flame spray. Textile Reseach Journal, 2020, 90, 503-511.	2.2	8
23	Photocatalytic Activity of Multicompound TiO2/SiO2 Nanoparticles. Inorganics, 2021, 9, 21.	2.7	8
24	On the limit of superhydrophobicity: defining the minimum amount of TiO ₂ nanoparticle coating. Materials Research Express, 2019, 6, 035004.	1.6	6
25	Protective stainless steel micropillars for enhanced photocatalytic activity of TiO2 nanoparticles during wear. Surface and Coatings Technology, 2020, 381, 125201.	4.8	6
26	Surface-enhanced Raman scattering active substrates by liquid flame spray deposited and inkjet printed silver nanoparticles. Optical Review, 2014, 21, 339-344.	2.0	5
27	Planar fluidic channels on TiO2 nanoparticle coated paperboard. Nordic Pulp and Paper Research Journal, 2016, 31, 232-238.	0.7	4
28	Characteristics of nFOG, an aerosol-based wet thin film coating technique. Journal of Coatings Technology Research, 2018, 15, 623-632.	2.5	4
29	Adjustable wetting of Liquid Flame Spray (LFS) TiO ₂ -nanoparticle coated board: Batch-type versus roll-to-roll stimulation methods. Nordic Pulp and Paper Research Journal, 2014, 29, 271-279.	0.7	4
30	Switchable water absorption of paper via liquid flame spray nanoparticle coating. Cellulose, 2014, 21, 2033-2043.	4.9	3
31	Coating of Silica and Titania Aerosol Nanoparticles by Silver Vapor Condensation. Aerosol Science and Technology, 2015, 49, 767-776.	3.1	3
32	Roll-to-Roll Coating by Liquid Flame Spray Nanoparticle Deposition. Materials Research Society Symposia Proceedings, 2015, 1747, 37.	0.1	2
33	Comparison of different coating techniques on the properties of FucoPol films. International Journal of Biological Macromolecules, 2017, 103, 268-274.	7.5	2
34	Roll-to-roll manufacturing of disposable surfaceenhanced Raman scattering (SERS) sensors on paper based substrates. Nordic Pulp and Paper Research Journal, 2017, 32, 222-228.	0.7	2
35	Characterization of flame coated nanoparticle surfaces with antibacterial properties and the heat-induced embedding in thermoplastic-coated paper. SN Applied Sciences, 2019, 1, 1.	2.9	2
36	Paperboard as a substrate for biocompatible slippery liquid-infused porous surfaces. Nordic Pulp and Paper Research Journal, 2020, 35, 479-489.	0.7	2