Steven Patterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7493242/publications.pdf Version: 2024-02-01

	430442	476904
1,848	18	29
citations	h-index	g-index
32	32	2363
docs citations	times ranked	citing authors
	citations 32	1,84818citationsh-index3232

#	Article	IF	CITATIONS
1	Loss of blood CD11c+ myeloid and CD11câ^plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood, 2001, 98, 2574-2576.	0.6	360
2	Human peripheral blood contains two distinct lineages of dendritic cells. European Journal of Immunology, 1999, 29, 2769-2778.	1.6	335
3	Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood, 2003, 101, 4505-4511.	0.6	236
4	Plasmacytoid Dendritic Cells Are Highly Susceptible to Human Immunodeficiency Virus Type 1 Infection and Release Infectious Virus. Journal of Virology, 2001, 75, 6710-6713.	1.5	179
5	Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19940-19945.	3.3	136
6	Oral contraceptive use induces upregulation of the CCR5 chemokine receptor on CD4+ T cells in the cervical epithelium of healthy women. Journal of Reproductive Immunology, 2002, 54, 117-131.	0.8	86
7	Langerin negative dendritic cells promote potent CD8 ⁺ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3041-3046.	3.3	82
8	Monocyteâ€Derived Dendritic Cells from HIV Type 1–Infected Individuals Show Reduced Ability to Stimulate T Cells and Have Altered Production of Interleukin (IL)–12 and ILâ€10. Journal of Infectious Diseases, 2009, 199, 1862-1871.	1.9	47
9	Human BDCA-1-Positive Blood Dendritic Cells Differentiate into Phenotypically Distinct Immature and Mature Populations in the Absence of Exogenous Maturational Stimuli: Differentiation Failure in HIV Infection. Journal of Immunology, 2005, 174, 8200-8209.	0.4	43
10	Higher levels of activation markers and chemokine receptors on T lymphocytes in the cervix than peripheral blood of normal healthy women. Journal of Reproductive Immunology, 2001, 52, 101-111.	0.8	40
11	Antigen presentation and the role of dendritic cells in HIV. Current Opinion in Infectious Diseases, 2004, 17, 1-6.	1.3	37
12	Recruitment of CD4+ T lymphocytes and macrophages into the cervical epithelium of women after coitus. American Journal of Obstetrics and Gynecology, 2003, 188, 376-381.	0.7	34
13	Manipulation of cytokine secretion in human dendritic cells using glycopolymers with picomolar affinity for DC-SIGN. Chemical Science, 2017, 8, 6974-6980.	3.7	31
14	Human Langerhans' cells and dermalâ€ŧype dendritic cells generated from CD34 stem cells express different tollâ€like receptors and secrete different cytokines in response to tollâ€like receptor ligands. Immunology, 2008, 124, 329-338.	2.0	29
15	TLR-Stimulated CD34 Stem Cell-Derived Human Skin-Like and Monocyte-Derived Dendritic Cells Fail to Induce Th17 Polarization of Naive T Cells but Do Stimulate Th1 and Th17 Memory Responses. Journal of Immunology, 2009, 183, 2242-2251.	0.4	26
16	HIV-1 infection and induction of interferon alpha in plasmacytoid dendritic cells. Current Opinion in HIV and AIDS, 2011, 6, 373-378.	1.5	24
17	Langerhans cells are more efficiently transduced than dermal dendritic cells by adenovirus vectors expressing either group C or group B fibre protein: Implications for mucosal vaccines. European Journal of Immunology, 2005, 35, 2617-2626.	1.6	21
18	Human NK Cell Up-regulation of CD69, HLA-DR, Interferon Î ³ Secretion and Cytotoxic Activity by Plasmacytoid Dendritic Cells is Regulated through Overlapping but Different Pathways. Sensors, 2009, 9, 386-403.	2.1	21

STEVEN PATTERSON

#	Article	IF	CITATIONS
19	Human blood CD1c dendritic cells stimulate IL-12-independent IFN- <i>γ</i> responses and have a strikingly low inflammatory profile. Journal of Leukocyte Biology, 2015, 97, 873-885.	1.5	18
20	Loss of NK Stimulatory Capacity by Plasmacytoid and Monocyte-Derived DC but Not Myeloid DC in HIV-1 Infected Patients. PLoS ONE, 2011, 6, e17525.	1.1	16
21	Use of Adenovirus in Vaccines for HIV. Handbook of Experimental Pharmacology, 2009, , 275-293.	0.9	11
22	Fusion of Ubiquitin to HIV Gag Impairs Human Monocyte-Derived Dendritic Cell Maturation and Reduces Ability to Induce Gag T Cell Responses. PLoS ONE, 2014, 9, e88327.	1.1	6
23	Immune Responses in the Central Nervous System Are Anatomically Segregated in a Non-Human Primate Model of Human Immunodeficiency Virus Infection. Frontiers in Immunology, 2017, 8, 361.	2.2	6
24	Activity of different vaccine-associated promoter elements in human dendritic cells. Immunology Letters, 2008, 115, 117-125.	1.1	5
25	Vaccination of Macaques with DNA Followed by Adenoviral Vectors Encoding Simian Immunodeficiency Virus (SIV) Gag Alone Delays Infection by Repeated Mucosal Challenge with SIV. Journal of Virology, 2019, 93, .	1.5	5
26	Fragmentation of SIV-gag Vaccine Induces Broader T Cell Responses. PLoS ONE, 2012, 7, e48038.	1.1	5
27	CD34â€derived human Langerhans cells stimulate a T helper type 2 response independently of extracellularâ€signalâ€regulated kinase phosphorylation. Immunology, 2010, 131, 210-219.	2.0	4
28	Increased Activity of Extrinsic and Intrinsic Apoptosis Pathways in Different Mononuclear Cell Types in HIV Type 1-Infected Patients Regardless of Whether They Are Depleted in Disease. AIDS Research and Human Retroviruses, 2013, 29, 709-717.	0.5	4
29	Mysteries of HIV pathogenesis explained. Blood, 2001, 98, 895-896.	0.6	1
30	Expression of a versatile DC-targeting fusion protein using an Adenovirus expression system. Protein Expression and Purification, 2012, 84, 270-279.	0.6	0
31	Chimeric Trojan Protein Insertion in Lentiviral Membranes Makes Lentiviruses Susceptible to Neutralization by Anti-Tetanus Serum Antibodies. Human Gene Therapy, 2017, 28, 242-254.	1.4	0

Loss, Infection, and Dysfunction of Dendritic Cells in HIV Infection. , 2007, , 405-446.

0