Xin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7492928/publications.pdf Version: 2024-02-01

XIN CHEN

#	Article	IF	CITATIONS
1	Emergence of high superconductivity in a layered TaS3 crystal. Journal of Materials Chemistry C, 2022, 10, 2089-2094.	5.5	7
2	Screening for new thermoelectric material: A semiconducting TaS3 with nanoporous structure. Journal of Materiomics, 2022, 8, 1031-1037.	5.7	1
3	Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Applied Physics Letters, 2022, 120, .	3.3	13
4	Double-dome superconductivity in germanium phosphides. Journal of Materials Chemistry C, 2022, 10, 8617-8624.	5.5	2
5	Prediction of enhanced thermoelectric performance in two-dimensional black phosphorus nanosheets. Vacuum, 2021, 183, 109790.	3.5	10
6	Superior Conversion Efficiency Achieved in GeP ₃ /h-BN Heterostructures as Novel Flexible and Ultralight Thermoelectrics. ACS Applied Materials & Interfaces, 2021, 13, 18800-18808.	8.0	14
7	Retainable Superconductivity and Structural Transition in 1T-TaSe2 Under High Pressure. Inorganic Chemistry, 2021, 60, 11385-11393.	4.0	5
8	Enhanced strength of nano-polycrystalline diamond by introducing boron carbide interlayers at the grain boundaries. Nanoscale Advances, 2020, 2, 691-698.	4.6	7
9	Pressure-induced unexpected â^2 oxidation states of bromine and superconductivity in magnesium bromide. Physical Chemistry Chemical Physics, 2020, 22, 3066-3072.	2.8	4
10	Polarization-enhanced bulk photovoltaic effect of BiFeO3 epitaxial film under standard solar illumination. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126831.	2.1	11
11	Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform. Chinese Physics Letters, 2020, 37, 076203.	3.3	8
12	Predicted stable Li ₅ P ₂ and Li ₄ P at ambient pressure: novel high-performance anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 19172-19177.	2.8	4
13	qvasp: A flexible toolkit for VASP users in materials simulations. Computer Physics Communications, 2020, 257, 107535.	7.5	88
14	Pressure-driven significant phonon mode softening and robust superconductivity in layered germanium phosphide. Journal of Materials Chemistry A, 2020, 8, 20054-20061.	10.3	17
15	Superconducting boron allotropes. Physical Review B, 2020, 101, .	3.2	18
16	Enhanced Thermoelectric Performance in Black Phosphorus Nanotubes by Band Modulation through Tailoring Nanotube Chirality. Small, 2020, 16, e2001820.	10.0	13
17	Discovery of pressureâ€induced monoclinic to monoclinic phase transition above 60 GPa in single crystal NaAlSi 2 O 6 jadeite. Journal of Raman Spectroscopy, 2020, 51, 844-850.	2.5	3
18	Prediction of a novel robust superconducting state in TaS ₂ under high pressure. Physical Chemistry Chemical Physics, 2020, 22, 8827-8833.	2.8	7

XIN CHEN

#	Article	IF	CITATIONS
19	Packing high-energy together: Binding the power of pentazolate and high-valence metals with strong bonds. Materials and Design, 2020, 193, 108820.	7.0	14
20	Ultrahigh Thermoelectric Performance Realized in Black Phosphorus System by Favorable Band Engineering through Group VA Doping. Advanced Functional Materials, 2019, 29, 1904346.	14.9	41
21	Remarkable electronic band structure leads to high thermoelectric properties in p-type Î ³ -Cu2S. Vacuum, 2019, 170, 108964.	3.5	6
22	Boron–oxygen complex yields n-type surface layer in semiconducting diamond. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7703-7711.	7.1	60
23	Importance of non-parabolic band effects in the thermoelectric properties of semiconductors. Scientific Reports, 2013, 3, 3168.	3.3	147
24	Potential thermoelectric performance of hole-doped Cu ₂ O. New Journal of Physics, 2013, 15, 043029.	2.9	47
25	High-pressure structures and metallization of sodium chloride. Europhysics Letters, 2012, 100, 26005.	2.0	16
26	Atomistic Design of High Thermoelectricity on Si/Ge Superlattice Nanowires. Journal of Physical Chemistry C, 2011, 115, 20696-20702.	3.1	30
27	Origin of the High Thermoelectric Performance in Si Nanowires: A First-Principle Study. Journal of Physical Chemistry C, 2009, 113, 14001-14005.	3.1	25
28	HgTe: A potential thermoelectric material in the cinnabar phase. Journal of Chemical Physics, 2008, 128, 194713.	3.0	33
29	Enhanced thermoelectric performance of PbTe within the orthorhombic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>P</mml:mi><mml:mi>n</mml:mi><mml:mi>m</mml:mi>m<mml:mi>aPhysical Review B, 2007, 76, .</mml:mi></mml:mrow></mml:math 	ml:mi> <td>.ml:mrow> <</td>	.ml:mrow> <
30	Fabrication of Alkali Metal Boride: Honeycomb‣ike Structured NaB 4 with High Hardness and Excellent	14.9	9

30 Electrical Conductivity. Advanced Functional Materials, 0, , 2110872.