Mohd Razali Shamsuddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7492760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Applied Energy, 2015, 160, 58-70.	10.1	290
2	Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Conversion and Management, 2017, 141, 171-182.	9.2	240
3	Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renewable and Sustainable Energy Reviews, 2018, 82, 3645-3655.	16.4	159
4	Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 2019, 181, 562-570.	9.2	107
5	Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renewable Energy, 2017, 111, 611-619.	8.9	98
6	Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chemical Engineering Journal, 2018, 347, 137-144.	12.7	94
7	Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renewable Energy, 2015, 81, 347-354.	8.9	91
8	Biodiesel production in the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of palm fatty acid distillate (PFAD). Fuel, 2016, 178, 253-262.	6.4	80
9	Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts. Biomass and Bioenergy, 2020, 134, 105476.	5.7	78
10	Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst. Energy, 2015, 89, 965-973.	8.8	69
11	Mesoporous NiO/Al-SBA-15 catalysts for solvent-free deoxygenation of palm fatty acid distillate. Microporous and Mesoporous Materials, 2019, 276, 13-22.	4.4	68
12	Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Arabian Journal of Chemistry, 2016, 9, 179-189.	4.9	63
13	Methyl ester production from palm fatty acid distillate (PFAD) using sulfonated cow dung-derived carbon-based solid acid catalyst. Energy Conversion and Management, 2019, 196, 1306-1315.	9.2	49
14	Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata). Renewable Energy, 2019, 131, 187-196.	8.9	47
15	Production of green diesel from catalytic deoxygenation of chicken fat oil over a series binary metal oxide-supported MWCNTs. RSC Advances, 2020, 10, 626-642.	3.6	46
16	Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst: Characterization and optimization. Chinese Journal of Chemical Engineering, 2015, 23, 1857-1864.	3.5	45
17	Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst. Renewable Energy, 2017, 114, 638-643.	8.9	34
18	Sucrose-derived catalytic biodiesel synthesis from low cost palm fatty acid distillate. Chemical Engineering Research and Design, 2015, 95, 126-135.	5.6	32

Mohd Razali Shamsuddin

#	Article	IF	CITATIONS
19	Efficient reaction for biodiesel manufacturing using bi-functional oxide catalyst. Catalysis Communications, 2021, 149, 106201.	3.3	32
20	Production of methyl esters from waste cooking oil and chicken fat oil via simultaneous esterification and transesterification using acid catalyst. Energy Conversion and Management, 2020, 226, 113366.	9.2	31
21	Effective biodiesel synthesis from palm fatty acid distillate (PFAD) using carbon-based solid acid catalyst derived glycerol. Renewable Energy, 2019, 142, 658-667.	8.9	30
22	Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review. Processes, 2021, 9, 1198.	2.8	21
23	Development of bimetallic nickel-based catalysts supported on activated carbon for green fuel production. RSC Advances, 2020, 10, 37218-37232.	3.6	20
24	Enhanced CO ₂ methanation at mild temperature on Ni/zeolite from kaolin: effect of metal–support interface. RSC Advances, 2021, 11, 16376-16387.	3.6	18
25	The effect of structure directing agents on micro/mesopore structures of aluminosilicates from Indonesian kaolin as deoxygenation catalysts. Microporous and Mesoporous Materials, 2021, 315, 110917.	4.4	13
26	Lewis acid Ni/Al-MCM-41 catalysts for H ₂ -free deoxygenation of <i>Reutealis trisperma</i> oil to biofuels. RSC Advances, 2021, 11, 21885-21896.	3.6	13
27	Promoting dry reforming of methane <i>via</i> bifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas. RSC Advances, 2021, 11, 6667-6681.	3.6	11
28	Insight into <scp> CO ₂ </scp> reforming of <scp> CH ₄ </scp> via <scp>NiO</scp> /dolomite catalysts for production of <scp> H ₂ </scp> rich syngas. International Journal of Energy Research, 2021, 45, 15463-15480.	4.5	7
29	Evaluation of NiO/TALC Catalytic performance in carbon dioxide reforming of methane. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122, 106-117.	5.3	5
30	Catalytic ketonization of palmitic acid over a series of transition metal oxides supported on zirconia oxide-based catalysts. RSC Advances, 2021, 11, 31972-31982.	3.6	4
31	Chemoselective decarboxylation of ceiba oil to diesel-range alkanes over a red mud based catalyst under H ₂ -free conditions. RSC Advances, 2022, 12, 16903-16917.	3.6	4
32	General Concepts for Catalytic Synthesis of Biodiesel from Waste Cooking Oil. Green Energy and Technology, 2018, , 429-455.	0.6	2