
Ping-Sheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7491722/publications.pdf Version: 2024-02-01

PINC-SHENC LUL

#	Article	IF	CITATIONS
1	Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. Journal of Membrane Science, 2010, 350, 387-394.	4.1	223
2	Grafting of Zwitterion from Cellulose Membranes via ATRP for Improving Blood Compatibility. Biomacromolecules, 2009, 10, 2809-2816.	2.6	163
3	Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. Journal of Materials Chemistry B, 2014, 2, 7222-7231.	2.9	67
4	Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. Journal of Colloid and Interface Science, 2016, 480, 91-101.	5.0	66
5	Modification of Ti6Al4V Substrates with Well-defined Zwitterionic Polysulfobetaine Brushes for Improved Surface Mineralization. ACS Applied Materials & Interfaces, 2014, 6, 7141-7152.	4.0	53
6	Multi-functional zwitterionic coating for silicone-based biomedical devices. Chemical Engineering Journal, 2020, 398, 125663.	6.6	53
7	Copolymer Coatings Consisting of 2-Methacryloyloxyethyl Phosphorylcholine and 3-Methacryloxypropyl Trimethoxysilane via ATRP To Improve Cellulose Biocompatibility. ACS Applied Materials & Interfaces, 2012, 4, 4031-4039.	4.0	46
8	Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Materials Science and Engineering C, 2013, 33, 3865-3874.	3.8	46
9	Waste polystyrene foam-graft-acrylic acid/montmorillonite superabsorbent nanocomposite. Journal of Applied Polymer Science, 2007, 104, 2341-2349.	1.3	37
10	Synthesis and properties of a poly(acrylic acid)/montmorillonite superabsorbent nanocomposite. Journal of Applied Polymer Science, 2006, 102, 5725-5730.	1.3	36
11	Sulfobetaine as a zwitterionic mediator for 3D hydroxyapatite mineralization. Biomaterials, 2013, 34, 2442-2454.	5.7	36
12	Zwitterionic copolymers bearing phosphonate or phosphonic motifs as novel metal-anchorable anti-fouling coatings. Journal of Materials Chemistry B, 2017, 5, 5380-5389.	2.9	33
13	Poly(hexamethylene biguanide) (PHMB) as high-efficiency antibacterial coating for titanium substrates. Journal of Hazardous Materials, 2021, 411, 125110.	6.5	33
14	Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates. Journal of Materials Science and Technology, 2021, 62, 96-106.	5.6	29
15	The preparation and properties of dextrinâ€graftâ€acrylic acid/montmorillonite superabsorbent nanocomposite. Polymer Composites, 2009, 30, 976-981.	2.3	26
16	Surface modification of porous PLGA scaffolds with plasma for preventing dimensional shrinkage and promoting scaffold–cell/tissue interactions. Journal of Materials Chemistry B, 2018, 6, 7605-7613.	2.9	25
17	Covalently construction of poly(hexamethylene biguanide) as high-efficiency antibacterial coating for silicone rubber. Chemical Engineering Journal, 2021, 412, 128707.	6.6	25
18	Rational design of a zwitterionic–phosphonic copolymer for the surface antifouling modification of multiple biomedical metals. Journal of Materials Chemistry B, 2019, 7, 4055-4065.	2.9	24

PING-SHENG LIU

#	Article	IF	CITATIONS
19	Surface mineralization of Ti6Al4V substrates with calcium apatites for the retention and local delivery of recombinant human bone morphogenetic protein-2. Acta Biomaterialia, 2011, 7, 3488-3495.	4.1	21
20	Three-dimensionally presented anti-fouling zwitterionic motifs sequester and enable high-efficiency delivery of therapeutic proteins. Acta Biomaterialia, 2014, 10, 4296-4303.	4.1	20
21	A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering. Journal of Materials Chemistry B, 2014, 2, 7524-7533.	2.9	14
22	Phosphonate/zwitterionic/cationic terpolymers as high-efficiency bactericidal and antifouling coatings for metallic substrates. Journal of Materials Chemistry B, 2021, 9, 4169-4177.	2.9	11
23	Biodegradable Zwitterion/PLGA Scaffold Enables Robust Healing of Rat Calvarial Defects with Ultralow Dose of rhBMP-2. Biomacromolecules, 2020, 21, 2844-2855.	2.6	9
24	Phosphonate/quaternary ammonium copolymers as high-efficiency antibacterial coating for metallic substrates. Journal of Materials Chemistry B, 2021, 9, 8321-8329.	2.9	9
25	Tertiary amines convert 1O2 to H2O2 with enhanced photodynamic antibacterial efficiency. Journal of Hazardous Materials, 2022, 435, 128948.	6.5	8
26	Zwitterionic-phosphonate block polymer as anti-fouling coating for biomedical metals. Rare Metals, 2022, 41, 700-712.	3.6	7
27	<i>In situ</i> mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomaterials Science, 2022, 10, 781-793.	2.6	7
28	Wellâ€controlled ATRP of 2â€(2â€(2â€azidoethyoxy)ethoxy)ethyl methacrylate for highâ€density click functionalization of polymers and metallic substrates. Journal of Polymer Science Part A, 2016, 54, 1268-1277.	2.5	5
29	Facile surface modification of glass with zwitterionic polymers for improving the blood compatibility. Materials Research Express, 2018, 5, 065401.	0.8	5
30	Correction: Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. Journal of Materials Chemistry B, 2016, 4, 6279-6279.	2.9	4
31	Zwitterionic/active ester block polymers as multifunctional coatings for polyurethane-based substrates. Journal of Materials Chemistry B, 2022, 10, 3687-3695.	2.9	4
32	Experimental and numerical measurements of adhesion energies between PHEMA and PGLYMA with hydroxyapatite crystal. Bioinspiration and Biomimetics, 2015, 10, 046011.	1.5	3
33	A study on the conformational space of the all-trans retinal deprotonated Schiff base. Computational and Theoretical Chemistry, 2016, 1094, 1-7.	1.1	0
34	Antibacterial polyelectrolyte coatings enable sustained release of rhBMP-2 from titanium alloy. Colloids and Interface Science Communications, 2022, 48, 100614.	2.0	0