
Urmas Johanson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7491592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Carbon-Based Ionic Electromechanically Active Soft Actuators. Journal of Visualized Experiments, 2020, , .	0.3	3
2	An All-Textile Non-muscular Biomimetic Actuator Based on Electrohydrodynamic Swelling. Frontiers in Bioengineering and Biotechnology, 2020, 8, 408.	4.1	8
3	Electromechanically active polymer actuators based on biofriendly choline ionic liquids. Smart Materials and Structures, 2020, 29, 055021.	3.5	16
4	Encapsulation of ionic electromechanically active polymer actuators. Smart Materials and Structures, 2019, 28, 074002.	3.5	10
5	lonic Actuators as Manipulators for Microscopy. Frontiers in Robotics and Al, 2019, 6, 140.	3.2	4
6	Modelling and control of self-sensing ionic electroactive polymer actuator. , 2019, , .		1
7	Effect of porosity and tortuosity of electrodes on carbon polymer soft actuators. Journal of Applied Physics, 2018, 123, 014502.	2.5	9
8	Modeling, fabrication, and characterization of motion platform actuated by carbon polymer soft actuator. Sensors and Actuators A: Physical, 2018, 283, 87-97.	4.1	4
9	Mechanical and electro-mechanical properties of EAP actuators with inkjet printed electrodes. Synthetic Metals, 2018, 246, 122-127.	3.9	8
10	Modelling and Control of Ionic Electroactive Polymer Actuators under Varying Humidity Conditions. Actuators, 2018, 7, 7.	2.3	9
11	Carbide-derived carbon and poly-3,4-ethylenedioxythiphene composite laminate: linear and bending actuation. Synthetic Metals, 2018, 245, 67-73.	3.9	2
12	Fabrication of carbon polymer composite manipulated multi-degree motion platform. , 2018, , .		0
13	Scalable fabrication of ionic and capacitive laminate actuators for soft robotics. Sensors and Actuators B: Chemical, 2017, 246, 154-163.	7.8	35
14	Effect of porosity of the electrodes on ionic electroactive polymer actuators. Proceedings of SPIE, 2017, , .	0.8	0
15	Effect of electrical terminals made of copper to the ionic electroactive polymer actuators. Proceedings of SPIE, 2017, , .	0.8	1
16	Effect of ambient humidity on ionic electroactive polymer actuators. Smart Materials and Structures, 2016, 25, 055038.	3.5	14
17	Fish-skeleton visualization of bending actuators. Proceedings of SPIE, 2016, , .	0.8	0

18 Some electrochemical aspects of aqueous ionic polymer-composite actuators. , 2016, , .

2

Urmas Johanson

#	Article	IF	CITATIONS
19	A new class of ionic electroactive polymers based on green synthesis. Sensors and Actuators A: Physical, 2016, 249, 32-44.	4.1	23
20	In situ scanning electron microscopy study of strains of ionic electroactive polymer actuators. Journal of Intelligent Material Systems and Structures, 2016, 27, 1061-1074.	2.5	18
21	A power-autonomous self-rolling wheel using ionic and capacitive actuators. Proceedings of SPIE, 2015, , .	0.8	4
22	Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics. Advanced Engineering Materials, 2015, 17, 84-94.	3.5	141
23	Thermal behavior of ionic electroactive polymer actuators. , 2015, , .		3
24	Chapter 6. Ionic Polymer Metal Composites with Electrochemically Active Electrodes. RSC Smart Materials, 2015, , 215-227.	0.1	3
25	Lifetime measurements of ionic electroactive polymer actuators. Journal of Intelligent Material Systems and Structures, 2014, 25, 2267-2275.	2.5	12
26	Pulse-width-modulated charging of ionic and capacitive actuators. , 2014, , .		3
27	Ionic liquid-based actuators working in air: The effect of ambient humidity. Sensors and Actuators B: Chemical, 2014, 202, 114-122.	7.8	63
28	Ionic electroactive polymer artificial muscles in space applications. Scientific Reports, 2014, 4, 6913.	3.3	64
29	Charging a supercapacitor-like laminate with ambient moisture: from a humidity sensor to an energy harvester. Physical Chemistry Chemical Physics, 2013, 15, 9605.	2.8	50
30	An ionic liquid-based actuator as a humidity sensor. , 2013, , .		1
31	Carbon-polymer-ionic liquid composite as a motion sensor. Proceedings of SPIE, 2012, , .	0.8	1
32	A carbide-derived carbon laminate used as a mechanoelectrical sensor. Carbon, 2012, 50, 535-541.	10.3	35
33	Electroactive polymer actuators with carbon aerogel electrodes. Journal of Materials Chemistry, 2011, 21, 2577.	6.7	61
34	Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators. Materials, 2010, 3, 9-25.	2.9	44
35	lonic polymer metal composites with nanoporous carbon electrodes. , 2010, , .		3
36	Low voltage linear actuators based on carbide-derived carbon powder. Proceedings of SPIE, 2009, , .	0.8	1

URMAS JOHANSON

#	Article	IF	CITATIONS
37	A Distributed Model of Ionomeric Polymer Metal Composite. Journal of Intelligent Material Systems and Structures, 2009, 20, 1711-1724.	2.5	48
38	Nanoporous carbon-based electrodes for high strain ionomeric bending actuators. Smart Materials and Structures, 2009, 18, 095028.	3.5	72
39	Electrode reactions in Cu–Pt coated ionic polymer actuators. Sensors and Actuators B: Chemical, 2008, 131, 340-346.	7.8	40
40	Self healing properties of Cu-Pt coated ionic polymer actuators. , 2008, , .		0
41	Comparative study of the behavior of anions in polypyrrole films. Electrochimica Acta, 2005, 50, 1523-1528.	5.2	86
42	Study of the Properties of Electrodeposited Polypyrrole Films. Russian Journal of Electrochemistry, 2004, 40, 344-348.	0.9	16
43	Influence of Anions on Electrochemical Properties of Polypyrrole-Modified Electrodes. Russian Journal of Electrochemistry, 2002, 38, 182-187.	0.9	32
44	Kinetics of catalyzed dehydrocondensation of hydrogen functionalized siloxane. Journal of Applied Polymer Science, 0, , 52304.	2.6	1