List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7490548/publications.pdf Version: 2024-02-01

MIN ZOU

#	Article	IF	CITATIONS
1	Understanding the friction and deformation behavior of micro/nano-hierarchical textures through in-situ SEM observation and mechanics modeling. Tribology International, 2022, 165, 107271.	3.0	3
2	Polydopamine + SiO2 nanoparticle underlayer for improving DLC coating adhesion and durability. Surface and Coatings Technology, 2022, 429, 127964.	2.2	7
3	Microscale friction and deformation behavior of polydopamine/polytetrafluoroethylene-coated 60NiTi from nanoscratch tests. Thin Solid Films, 2022, 743, 139079.	0.8	4
4	Atomic layer deposition of lithium zirconium oxides for the improved performance of lithium-ion batteries. Dalton Transactions, 2022, 51, 2737-2749.	1.6	12
5	Test parameter and material dependence of the frictional properties of core-shell nanostructure textured surfaces. Tribology International, 2022, 171, 107567.	3.0	1
6	Effects of Test Parameters on the Frictional Properties of Al/Diamond-Like Carbon Core-Shell Nanostructure-Textured Surfaces. Tribology Transactions, 2022, 65, 633-642.	1.1	1
7	Nanomechanical properties of hardened 60NiTi. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140284.	2.6	11
8	Tribological behavior of the PDA/PTFE + Cu-SiO2 nanoparticle thin coatings. Surface and Coatings Technology, 2021, 409, 126852.	2.2	9
9	Micromechanical Tension Testing of Additively Manufactured 17-4 PH Stainless Steel Specimens. Journal of Visualized Experiments, 2021, , .	0.2	0
10	Designing a Bioinspired Surface for Improved Wear Resistance and Friction Reduction. Journal of Tribology, 2021, 143, .	1.0	3
11	The effect of dimensional parameters of multi-asperity surfaces on friction at the nanoscale. Computational Materials Science, 2021, 191, 110276.	1.4	2
12	Fabrication and Testing of Bioinspired Surface Designs for Friction Reduction at the Piston Ring and Liner Interface. Journal of Tribology, 2021, 143, .	1.0	8
13	Improved Tribological Performance of Polydopamine/Polytetrafluoroethylene Thin Coatings With Silica Nanoparticles Incorporated into the Polydopamine Underlayer. Journal of Tribology, 2021, 143, .	1.0	7
14	Improving the Tribological Performances of PDA + PTFE Nanocomposite Coatings by Hot Compaction. Tribology Transactions, 2021, 64, 841-850.	1.1	1
15	The effect of coating thickness on the tribological properties of polydopamine/PTFE + graphite particle coatings on 60NiTi. Surface and Coatings Technology, 2021, 420, 127320.	2.2	10
16	Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes. Energy Material Advances, 2021, 2021, .	4.7	27
17	Effect of Cu nanoparticles on the tribological performance of polydopamineÂ+Âpolytetrafluoroethylene coatings in oil-lubricated condition. Applied Surface Science, 2021, 565, 150525.	3.1	8
18	Interactions of E. coli with cylindrical micro-pillars of different geometric modifications. Colloids and Surfaces B: Biointerfaces, 2021, 209, 112190.	2.5	3

#	Article	IF	CITATIONS
19	Atomic layer deposition of zirconium oxide thin films. Journal of Materials Research, 2020, 35, 804-812.	1.2	19
20	Tribological performance of polydopamine + Ag nanoparticles/PTFE thin films. Tribology International, 2020, 144, 106097.	3.0	23
21	Loss of Function of Fatty Acid Desaturase 7 in Tomato Enhances Photosynthetic Carbon Fixation Efficiency. Frontiers in Plant Science, 2020, 11, 932.	1.7	5
22	Tribological properties of PDAÂ+ÂPTFE coating in oil-lubricated condition. Applied Surface Science, 2020, 534, 147627.	3.1	8
23	Snakeskin-Inspired Elastomers with Extremely Low Coefficient of Friction under Dry Conditions. ACS Applied Materials & Interfaces, 2020, 12, 57450-57460.	4.0	14
24	Multiâ€Scale In Situ Tribological Studies of Surfaces with 3D Textures Fabricated via Twoâ€Photon Lithography and Replica Molding. Advanced Materials Interfaces, 2020, 7, 2000299.	1.9	6
25	Tribological performance of PDA/PTFEÂ+ÂGraphite particle coatings on 60NiTi. Applied Surface Science, 2020, 527, 146731.	3.1	11
26	The Effects of PTFE Thickness on the Tribological Behavior of Thick PDA/PTFE Coatings. Tribology Transactions, 2020, 63, 575-584.	1.1	16
27	Digitization, replication, and modification of physical surfaces using two-photon lithography. Journal of Manufacturing Processes, 2020, 54, 180-189.	2.8	13
28	Fabrication and friction characteristics of arbitrary biosurfaces. Biointerphases, 2020, 15, 061016.	0.6	2
29	The Effects of Surface Roughness on the Durability of Polydopamine/PTFE Solid Lubricant Coatings on NiTiNOL 60. Tribology Transactions, 2019, 62, 919-929.	1.1	21
30	Experimental investigation of the wear mechanisms of thin PDA/PTFE coatings. Progress in Organic Coatings, 2019, 137, 105341.	1.9	8
31	The effects of annealing conditions on the wear of PDA/PTFE coatings. Applied Surface Science, 2019, 481, 723-735.	3.1	26
32	A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors. Journal of Materials Science, 2019, 54, 5236-5248.	1.7	40
33	Fabrication and tribological characterization of deformation-resistant nano-textured surfaces produced by two-photon lithography and atomic layer deposition. Tribology International, 2019, 132, 75-84.	3.0	15
34	Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 120-129.	1.5	35
35	Mechanical wear and oxidative degradation analysis of retrieved ultra high molecular weight polyethylene acetabular cups. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 314-323.	1.5	24
36	3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus. Tribology International, 2018, 122, 1-7.	3.0	56

#	Article	IF	CITATIONS
37	Nanostructure-Textured Surfaces with Low Friction and High Deformation Resistance. Tribology Transactions, 2018, 61, 80-87.	1.1	10
38	Deformation and fatigue resistance of Al/a-Si core-shell nanostructures subjected to cyclic nanoindentation. Applied Surface Science, 2018, 433, 617-626.	3.1	12
39	Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 51-61.	1.5	39
40	The effects of confined core volume on the mechanical behavior of Al/a-Si core-shell nanostructures. Acta Materialia, 2017, 128, 149-159.	3.8	16
41	Rapid Deposition of Uniform Polydopamine Coatings on Nanoparticle Surfaces with Controllable Thickness. Langmuir, 2017, 33, 6046-6053.	1.6	43
42	Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures. Applied Surface Science, 2017, 412, 96-104.	3.1	10
43	The effects of polydopamine coated Cu nanoparticles on the tribological properties of polydopamine/PTFE coatings. Tribology International, 2016, 103, 87-94.	3.0	44
44	The Effects of Graphite Filler on the Tribological Properties of Polydopamine/PTFE Coatings. Tribology Letters, 2016, 64, 1.	1.2	34
45	Polyvinylpyrrolidone adhesion layer for increased uniformity and optical transmittance of silica nanoparticle antireflective coatings. Journal of Adhesion Science and Technology, 2015, 29, 943-953.	1.4	2
46	Study of the anisotropic frictional and deformation behavior of surfaces textured with silver nanorods. Tribology International, 2015, 92, 439-445.	3.0	6
47	The Influence of Cu Nanoparticles on the Tribological Properties of Polydopamine/PTFEÂ+ÂCu Films. Tribology Letters, 2015, 59, 1.	1.2	35
48	Investigation of moth-eye antireflection coatings for photovoltaic cover glass using fdtd modeling method. , 2014, , .		0
49	Use of AuÂNanoparticle-Filled PTFE Films to Produce Low-Friction and Low-Wear Surface Coatings. Tribology Letters, 2014, 56, 223-230.	1.2	30
50	Fabrication of stable superhydrophilic surfaces on titanium substrates. Journal of Adhesion Science and Technology, 2014, 28, 823-832.	1.4	7
51	Superhydrophilic surface on Cu substrate to enhance lubricant retention. Journal of Adhesion Science and Technology, 2014, 28, 833-842.	1.4	5
52	Frictional anisotropy of tilted molybdenum nanorods fabricated by glancing angle deposition. Tribology International, 2014, 80, 216-221.	3.0	15
53	Wear resistant PTFE thin film enabled by a polydopamine adhesive layer. Applied Surface Science, 2014, 292, 350-356.	3.1	66
54	Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability. Applied Surface Science, 2013, 280, 820-827.	3.1	35

#	Article	IF	CITATIONS
55	Nanostructured PVP/SiO <inf>2</inf> antireflective coating for solar panel applications. , 2013, , .		1
56	Silica nanoparticle antireflective coating with PVP adhesion layer. , 2013, , .		2
57	Mechanical Properties and Deformation Behavior of Ni Nanodot-Patterned Surfaces. , 2013, , 111-145.		Ο
58	Tribological Study of PTFE/Au Nanoparticle Composite Thin Films. , 2011, , .		1
59	Micro/nano engineering on stainless steel substrates to produce superhydrophobic surfaces. Thin Solid Films, 2011, 520, 1520-1524.	0.8	28
60	Nanoindentation study of deformation-resistant Al/a-Si core–shell nanostructures. Acta Materialia, 2011, 59, 6110-6116.	3.8	15
61	Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures. Tribology Letters, 2011, 42, 51-58.	1.2	28
62	Fabrication of durable hydrophobic surfaces through surface texturing. Applied Surface Science, 2011, 257, 5688-5693.	3.1	17
63	Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B: Condensed Matter, 2010, 405, 1301-1306.	1.3	248
64	Adhesion and friction properties of micro/nano-engineered superhydrophobic/hydrophobic surfaces. Thin Solid Films, 2010, 518, 3801-3807.	0.8	84
65	Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3359-3362.	0.9	144
66	Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces. Nano Research, 2009, 2, 143-150.	5.8	64
67	Superhydrophilic textured-surfaces on stainless steel substrates. Thin Solid Films, 2009, 518, 1571-1574.	0.8	15
68	Nanoindentation of a Deformable Substrate Covered by Patterned Nanodot Asperities. , 2009, , .		0
69	Surface-nano-texturing by aluminum-induced crystallization of amorphous silicon. Surface and Coatings Technology, 2008, 203, 675-679.	2.2	40
70	Adhesion Study of Escherichia coli Cells on Nano-/Microtextured Surfaces in a Microfluidic System. IEEE Nanotechnology Magazine, 2008, 7, 573-579.	1.1	4
71	PFPE Modified Silicon Nano-Textured Surfaces for Adhesion and Friction Reduction. , 2008, , .		0
72	Production of a superhydrophilic surface by aluminum-induced crystallization of amorphous silicon. Nanotechnology, 2008, 19, 465304.	1.3	11

#	Article	IF	CITATIONS
73	The Effect of Surface Nano/Micro-Texturing on Escherichia Coli Cell Adhesion. , 2008, , .		0
74	Nanoindentation on a Ni Nanodot-Patterned Surface. , 2008, , .		0
75	Fabrication of Superhydrophilic Surfaces by Aluminum-Induced Crystallization of Amorphous Silicon. , 2008, , .		0
76	Self-Assembly of Si Nanoparticles Produced by Aluminum-Induced Crystallization of Amorphous Silicon Film. Electrochemical and Solid-State Letters, 2007, 10, K7.	2.2	3
77	Superhydrophobic surfaces by dynamic nanomasking and deep reactive ion etching. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2007, 221, 41-48.	0.1	2
78	Amorphous Silicon Thickness Effect on Formation of Silicon Nanostructures by Aluminum-Induced Crystallization of Amorphous Silicon. Electrochemical and Solid-State Letters, 2007, 10, H224.	2.2	1
79	Friction Study of a Ni Nanodot-patterned Surface. Tribology Letters, 2007, 28, 183-189.	1.2	31
80	Understanding the Effects of Stress on the Crystallization of Amorphous Silicon. Journal of Electronic Materials, 2007, 36, 191-196.	1.0	5
81	Hydrophobic Surfaces Prepared by Aluminum-Induced Crystallization of Amorphous Silicon. , 2007, , .		0
82	Nanotribology of a Silica Nanoparticle-Textured Surface. Tribology Transactions, 2006, 49, 66-71.	1.1	7
83	Nanoindentation of silica nanoparticles attached to a silicon substrate. Tribology Letters, 2006, 22, 189-196.	1.2	39
84	Ni nanodot-patterned surfaces for adhesion and friction reduction. Tribology Letters, 2006, 24, 137-142.	1.2	29
85	Nano-aluminum-induced crystallization of amorphous silicon. Materials Letters, 2006, 60, 1379-1382.	1.3	17
86	Self-Assembly of Aluminum-Induced Silicon Nanowires. Electrochemical and Solid-State Letters, 2006, 9, G133.	2.2	6
87	Adhesion and Friction Studies of a Selectively Micro/Nano-textured Surface Produced by UV Assisted Crystallization of Amorphous Silicon. Tribology Letters, 2005, 20, 43-52.	1.2	43
88	Comparison of Tribological Performances of Nano- and Micro-Textured Surfaces. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2005, 219, 103-110.	0.1	4
89	Large Grain Polycrystalline Silicon Film Produced by Nano-Aluminum-Enhanced Crystallization of Amorphous Silicon. Electrochemical and Solid-State Letters, 2005, 8, G179.	2.2	19
90	Closure to Discussion -Fabrication and Testing of Bioinspired Surface Designs for Friction Reduction at the Piston Ring and Liner Interface- [DOI: 10.1115/1.4050795] (2021, ASME J. Tribol., 143(5): 051109). Journal of Tribology, 0, , 1-3.	1.0	0