Lyn M Wise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7490430/publications.pdf Version: 2024-02-01

IVN M WISE

#	Article	IF	CITATIONS
1	Time-Dependent Anti-inflammatory Effects of a Lipid Extract from Macrocystis pyrifera on Toll-Like Receptor 2 Signaling in Human THP-1 Monocytes. Planta Medica International Open, 2022, 9, e80-e89.	0.5	2
2	Parapoxvirus Interleukin-10 Homologues Vary in Their Receptor Binding, Anti-Inflammatory, and Stimulatory Activities. Pathogens, 2022, 11, 507.	2.8	2
3	Advancements in the Delivery of Growth Factors and Cytokines for the Treatment of Cutaneous Wound Indications. Advances in Wound Care, 2021, 10, 596-622.	5.1	21
4	Skin antigenâ€presenting cells and wound healing: New knowledge gained and challenges encountered using mouse depletion models. Immunology, 2021, 163, 98-104.	4.4	5
5	Strategies for inclusion of growth factors into 3D printed bone grafts. Essays in Biochemistry, 2021, 65, 569-585.	4.7	9
6	Oestrogen deprivation induces chemokine production and immune cell recruitment in in vitro and in vivo models of oestrogen receptor-positive breast cancer. Breast Cancer Research, 2021, 23, 95.	5.0	3
7	Murine Model of Thermal Burn Injury for Evaluating Protein Therapeutics Derived from Viruses. Methods in Molecular Biology, 2021, 2225, 93-105.	0.9	0
8	Visible light mediated PVA-tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors. Biomaterials Science, 2020, 8, 5005-5019.	5.4	27
9	Vascular endothelial growth factor encoded by Parapoxviruses can regulate metabolism and survival of triple negative breast cancer cells. Cell Death and Disease, 2020, 11, 996.	6.3	4
10	Anti-fibrotic Actions of Equine Interleukin-10 on Transforming Growth Factor-Beta1-Stimulated Dermal Fibroblasts Isolated From Limbs of Horses. Frontiers in Veterinary Science, 2020, 7, 577835.	2.2	2
11	Human Papillomavirus E6/E7 Expression in Preeclampsia-Affected Placentae. Pathogens, 2020, 9, 239.	2.8	1
12	Orf Virus IL-10 and VEGF-E Act Synergistically to Enhance Healing of Cutaneous Wounds in Mice. Journal of Clinical Medicine, 2020, 9, 1085.	2.4	13
13	Depletion of langerin ⁺ cells enhances cutaneous wound healing. Immunology, 2020, 160, 366-381.	4.4	20
14	Deriving Immune Modulating Drugs from Viruses—A New Class of Biologics. Journal of Clinical Medicine, 2020, 9, 972.	2.4	15
15	Chemokine-Binding Proteins Encoded by Parapoxvirus of Red Deer of New Zealand Display Evidence of Gene Duplication and Divergence of Ligand Specificity. Frontiers in Microbiology, 2019, 10, 1421.	3.5	8
16	The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model. International Journal of Molecular Sciences, 2019, 20, 538.	4.1	56
17	The role of Langerhans cells in pathologies of the skin. Immunology and Cell Biology, 2019, 97, 700-713.	2.3	25
18	VEGF Receptor-2 Activation Mediated by VEGF-E Limits Scar Tissue Formation Following Cutaneous Injury. Advances in Wound Care, 2018, 7, 283-297.	5.1	19

Lyn M Wise

#	Article	IF	CITATIONS
19	Exploitation of receptor tyrosine kinases by viral-encoded growth factors. Growth Factors, 2018, 36, 118-140.	1.7	10
20	Treatment of limb wounds of horses with orf virus IL-10 and VEGF-E accelerates resolution of exuberant granulation tissue, but does not prevent its development. PLoS ONE, 2018, 13, e0197223.	2.5	20
21	Deletion of the Chemokine Binding Protein Gene from the Parapoxvirus Orf Virus Reduces Virulence and Pathogenesis in Sheep. Frontiers in Microbiology, 2017, 8, 46.	3.5	25
22	Shortâ€term treatment of equine wounds with orf virus ILâ€10 and VEGFâ€E dampens inflammation and promotes repair processes without accelerating closure. Wound Repair and Regeneration, 2016, 24, 966-980.	3.0	32
23	Orf virus interleukinâ€10 and vascular endothelial growth factorâ€E modulate gene expression in cultured equine dermal fibroblasts. Veterinary Dermatology, 2016, 27, 434.	1.2	8
24	Orf virus IL-10 reduces monocyte, dendritic cell and mast cell recruitment to inflamed skin. Virus Research, 2016, 213, 230-237.	2.2	16
25	A Broad-Spectrum Chemokine-Binding Protein of Bovine Papular Stomatitis Virus Inhibits Neutrophil and Monocyte Infiltration in Inflammatory and Wound Models of Mouse Skin. PLoS ONE, 2016, 11, e0168007.	2.5	18
26	Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin. Viruses, 2015, 7, 1505-1539.	3.3	124
27	Effect of a Broad-Specificity Chemokine-Binding Protein on Brain Leukocyte Infiltration and Infarct Development. Stroke, 2015, 46, 537-544.	2.0	41
28	Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity. Structure, 2015, 23, 1199-1213.	3.3	28
29	Orf virus inhibits interferon stimulated gene expression and modulates the JAK/STAT signalling pathway. Virus Research, 2015, 208, 180-188.	2.2	20
30	Orf virus <scp>IL</scp> â€10 accelerates wound healing while limiting inflammation and scarring. Wound Repair and Regeneration, 2014, 22, 356-367.	3.0	33
31	The vascular endothelial growth factor (VEGF)-E encoded by orf virus regulates keratinocyte proliferation and migration and promotes epidermal regeneration. Cellular Microbiology, 2012, 14, 1376-1390.	2.1	56
32	The chemokine-binding protein encoded by the poxvirus orf virus inhibits recruitment of dendritic cells to sites of skin inflammation and migration to peripheral lymph nodes. Cellular Microbiology, 2010, 12, 665-676.	2.1	45
33	Orf virus-encoded chemokine-binding protein is a potent inhibitor of inflammatory monocyte recruitment in a mouse skin model. Journal of General Virology, 2009, 90, 1477-1482.	2.9	32
34	Conservation and variation of the parapoxvirus GM-CSF-inhibitory factor (GIF) proteins. Journal of General Virology, 2009, 90, 970-977.	2.9	20
35	The Câ€terminus of viral vascular endothelial growth factorâ€E partially blocks binding to VEGF receptorâ€1. FEBS Journal, 2008, 275, 207-217.	4.7	6
36	Bovine papular stomatitis virus encodes a functionally distinct VEGF that binds both VEGFR-1 and VEGFR-2. Journal of General Virology, 2007, 88, 781-791.	2.9	33

Lyn M Wise

#	Article	IF	CITATIONS
37	Orf virus interleukin-10 inhibits cytokine synthesis in activated human THP-1 monocytes, but only partially impairs their proliferation. Journal of General Virology, 2007, 88, 1677-1682.	2.9	22
38	Parapoxvirus of red deer in New Zealand encodes a variant of viral vascular endothelial growth factor. Virus Research, 2007, 124, 50-58.	2.2	26
39	Major amino acid sequence variants of viral vascular endothelial growth factor are functionally equivalent during Orf virus infection of sheep skin. Virus Research, 2007, 128, 115-125.	2.2	22
40	Pseudocowpox virus Encodes a Homolog of Vascular Endothelial Growth Factor. Virology, 2003, 305, 298-309.	2.4	44
41	Viral Vascular Endothelial Growth Factors Vary Extensively in Amino Acid Sequence, Receptor-binding Specificities, and the Ability to Induce Vascular Permeability yet Are Uniformly Active Mitogens. Journal of Biological Chemistry, 2003, 278, 38004-38014.	3.4	63
42	Vascular endothelial growth factors encoded by Orf virus show surprising sequence variation but have a conserved, functionally relevant structure. Journal of General Virology, 2002, 83, 2845-2855.	2.9	51
43	Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO Journal, 2001, 20, 4762-4773.	7.8	705
44	Sequence and Functional Analysis of a Homolog of Interleukin-10 Encoded by the Parapoxvirus Orf Virus. Virus Genes, 2000, 21, 85-95.	1.6	55
45	Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3071-3076.	7.1	254