Je Moon Yun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/749038/publications.pdf

Version: 2024-02-01

58 3,026 31 54
papers citations h-index g-index

61 61 61 3967 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Vertically stacked bilayer CuCo ₂ O ₄ /MnCo ₂ O ₄ heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 8061-8071.	5.2	244
2	An  aqueous route' for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Materials, 2013, 5, e45-e45.	3.8	210
3	Architecturally Robust Graphene-Encapsulated MXene Ti ₂ CT _{<i>x</i>} @Polyaniline Composite for High-Performance Pouch-Type Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 34212-34221.	4.0	168
4	High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 2017, 7, 11000-11011.	1.7	166
5	Bismuth Oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochimica Acta, 2018, 271, 351-360.	2.6	144
6	Two-dimensional titanium carbide (MXene)-wrapped sisal-Like NiCo2S4 as positive electrode for High-performance hybrid pouch-type asymmetric supercapacitor. Chemical Engineering Journal, 2019, 375, 121939.	6.6	139
7	Facile synthesis of manganese carbonate quantum dots/Ni(HCO ₃) ₂ –MnCO ₃ composites as advanced cathode materials for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3. 22102-22117.	5.2	127
8	Facile Synthesis of Microsphere Copper Cobalt Carbonate Hydroxides Electrode for Asymmetric Supercapacitor. Electrochimica Acta, 2016, 188, 898-908.	2.6	126
9	A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton Transactions, 2017, 46, 6601-6611.	1.6	118
10	Polycrystalline and Mesoporous 3-D Bi ₂ O ₃ Nanostructured Negatrodes for High-Energy and Power-Asymmetric Supercapacitors: Superfast Room-Temperature Direct Wet Chemical Growth. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11037-11047.	4.0	95
11	High-performance cobalt carbonate hydroxide nano-dot/NiCo(CO 3)(OH) 2 electrode for asymmetric supercapacitors. Applied Surface Science, 2018, 433, 16-26.	3.1	92
12	Mechanism of sodium adsorption on N-doped graphene nanoribbons for sodium ion battery applications: A density functional theory approach. Carbon, 2017, 119, 492-501.	5.4	68
13	Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications. Electrochimica Acta, 2019, 296, 308-316.	2.6	64
14	A novel approach to fabricate carbon sphere intercalated holey graphene electrode for high energy density electrochemical capacitors. Chemical Engineering Journal, 2017, 317, 461-470.	6.6	62
15	Sulphur Source-Inspired Self-Grown 3D Ni _{<i>x</i>} S _{<i>y</i>} Nanostructures and Their Electrochemical Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4551-4559.	4.0	60
16	DNA Origami Nanopatterning on Chemically Modified Graphene. Angewandte Chemie - International Edition, 2012, 51, 912-915.	7.2	59
17	Facile Chemical Synthesis and Potential Supercapattery Energy Storage Application of Hydrangea-type Bi ₂ MoO ₆ . ACS Omega, 2019, 4, 11093-11102.	1.6	57
18	3D yolk–shell NiGa ₂ S ₄ microspheres confined with nanosheets for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 6292-6298.	5.2	52

#	Article	IF	CITATIONS
19	Direct successive ionic layer adsorption and reaction (SILAR) synthesis of nickel and cobalt hydroxide composites for supercapacitor applications. Journal of Alloys and Compounds, 2017, 722, 809-817.	2.8	45
20	Seawater electrolyte-mediated high volumetric MXene-based electrochemical symmetric supercapacitors. Dalton Transactions, 2018, 47, 8676-8682.	1.6	45
21	Sb ₂ S ₃ Nanoparticles Anchored or Encapsulated by the Sulfur-Doped Carbon Sheet for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33966-33977.	4.0	44
22	Synthesis of Bi2O3-MnO2 Nanocomposite Electrode for Wide-Potential Window High Performance Supercapacitor. Energies, 2019, 12, 3320.	1.6	42
23	Enhanced electrochemical performance of Ti3C2T MXene film based supercapacitors in H2SO4/KI redox additive electrolyte. Applied Surface Science, 2020, 504, 144250.	3.1	39
24	Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors. Dalton Transactions, 2017, 46, 12876-12883.	1.6	38
25	Electrochemical glucose sensing characteristics of two-dimensional faceted and non-faceted CuO nanoribbons. CrystEngComm, 2019, 21, 1607-1616.	1.3	36
26	Polyaniline-cobalt hydroxide hybrid nanostructures and their supercapacitor studies. Materials Chemistry and Physics, 2016, 180, 226-236.	2.0	35
27	Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2018, 810, 239-247.	1.9	34
28	Synergistic effects of dual nano-type electrode of NiCo-nanowire/NiMn-nanosheet for high-energy supercapacitors. Journal of Alloys and Compounds, 2019, 789, 119-128.	2.8	34
29	Three-Dimensional Self-Standing and Conductive MnCO ₃ @Graphene/CNT Networks for Flexible Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 9763-9770.	3.2	33
30	Highly porous carbon nanofoams synthesized from gas-phase plasma for symmetric supercapacitors. Chemical Engineering Journal, 2019, 360, 1310-1319.	6.6	33
31	Asymmetric faradaic assembly of Bi ₂ O ₃ and MnO ₂ for a high-performance hybrid electrochemical energy storage device. RSC Advances, 2019, 9, 32154-32164.	1.7	31
32	Flexible and freestanding core-shell SnO /carbon nanofiber mats for high-performance supercapacitors. Journal of Alloys and Compounds, 2017, 728, 1362-1371.	2.8	29
33	Metal-free heterogeneous and mesoporous biogenic graphene-oxide nanoparticle-catalyzed synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Advances, 2018, 8, 17373-17379.	1.7	26
34	Room-temperature synthesis and CO ₂ -gas sensitivity of bismuth oxide nanosensors. RSC Advances, 2020, 10, 17217-17227.	1.7	26
35	Chemically grown bismuth-oxy-iodide (BiOl/Bi ₉ I ₂) nanostructure for high performance battery-type supercapacitor electrodes. Dalton Transactions, 2020, 49, 774-780.	1.6	23
36	Highly porous nitrogen-doped carbon for superior electric double-layer capacitors. RSC Advances, 2017, 7, 44735-44742.	1.7	22

#	Article	IF	CITATIONS
37	NiF ₂ Nanorod Arrays for Supercapattery Applications. ACS Omega, 2020, 5, 9768-9774.	1.6	19
38	An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors. Journal of the Korean Ceramic Society, 2018, 55, 407-418.	1.1	19
39	Investigations of the band structures of edge-defect zigzag graphene nanoribbons using density functional theory. RSC Advances, 2016, 6, 39587-39594.	1.7	18
40	Silver particle-loaded nickel oxide nanosheet arrays on nickel foam as advanced binder-free electrodes for aqueous asymmetric supercapacitors. RSC Advances, 2017, 7, 41771-41778.	1.7	17
41	Enhanced electrochemical activity of perforated graphene in nickel-oxide-based supercapacitors and fabrication of potential asymmetric supercapacitors. Sustainable Energy and Fuels, 2017, 1, 529-539.	2.5	16
42	Synthesis of nickel–copper composite with controllable nanostructure through facile solvent control as positive electrode for high-performance supercapacitors. Dalton Transactions, 2020, 49, 13123-13133.	1.6	16
43	Sulfur and phosphorus co-doped nickel–cobalt layered double hydroxides for enhancing electrochemical reactivity and supercapacitor performance. RSC Advances, 2021, 11, 12449-12459.	1.7	16
44	Improvement of electrical performance by surface structure of Ni-material as a high-performance asymmetric supercapacitor electrode. Ceramics International, 2020, 46, 11189-11197.	2.3	15
45	Electrocatalytic Water Splitting through the Ni <i>_x</i> S <i>_y</i> Self-Grown Superstructures Obtained via a Wet Chemical Sulfurization Process. ACS Omega, 2019, 4, 6486-6491.	1.6	14
46	Piezoelectric Performance of Cubicâ€Phase BaTiO ₃ Nanoparticles Vertically Aligned via Electric Field. Advanced Sustainable Systems, 2018, 2, 1700133.	2.7	13
47	Effect of Cu addition on the microstructure and properties of TiB2 films deposited by a hybrid system combining high power impulse magnetron sputtering and pulsed dc magnetron sputtering. Surface and Coatings Technology, 2018, 344, 441-448.	2.2	13
48	High energy and power density of self-grown CuS@Cu2O core-shell supercapattery positrode. Journal of Solid State Electrochemistry, 2019, 23, 2609-2617.	1.2	13
49	Cellulose non-woven fabric-derived porous carbon films as binder-free electrodes for supercapacitors. Cellulose, 2019, 26, 4529.	2.4	13
50	Room-temperature chemical synthesis of 3â€D dandelionâ€type nickel chloride (NiCl2@NiF) supercapattery nanostructured materials. Journal of Colloid and Interface Science, 2020, 578, 547-554.	5.0	13
51	Preparation and Electrochemical Properties of Nickel Iron Carbonate Hydroxide as a Cathode Electrode Material for Asymmetric Supercapacitors. Nanoscience and Nanotechnology Letters, 2018, 10, 741-746.	0.4	12
52	Unravelling the Correlation Between the Ni(OH ₎₂ Nanosheet Growth and the Temperature by Ni Surface Etching for High-Performance Supercapacitors. Nanoscience and Nanotechnology Letters, 2018, 10, 767-771.	0.4	12
53	Manganese carbonate nanograined assembling macrocube via a facile hydrothermal process for high performance supercapacitors. Materials Letters, 2017, 194, 74-77.	1.3	11
54	Bifunctional Microwave-Assisted Molybdenum-Complex Carbon Sponge Production for Supercapacitor and Water-Splitting Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60966-60977.	4.0	10

#	Article	IF	CITATIONS
55	Preparation and electrochemical characterization of porous carbon pearls from carboxymethyl cellulose for electrical double-layer capacitors. Korean Journal of Chemical Engineering, 2022, 39, 1232-1239.	1.2	8
56	Scalable processing method using waste polystyrene to produce nitrogen-enriched porous carbon for boosting supercapacitor performance. Materials Letters, 2021, 300, 130135.	1.3	5
57	Surface Nanopatterning: Mussel-Inspired Block Copolymer Lithography for Low Surface Energy Materials of Teflon, Graphene, and Gold (Adv. Mater. 47/2011). Advanced Materials, 2011, 23, 5584-5584.	11.1	2

Back Cover: DNA Origami Nanopatterning on Chemically Modified Graphene (Angew. Chem. Int. Ed.) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf