Neil Burgess

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7490350/neil-burgess-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

153	23,524	74	153
papers	citations	h-index	g-index
159	27,064 ext. citations	9	7.32
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
153	Location-dependent threat and associated neural abnormalities in clinical anxiety. <i>Communications Biology</i> , 2021 , 4, 1263	6.7	
152	A model of head direction and landmark coding in complex environments. <i>PLoS Computational Biology</i> , 2021 , 17, e1009434	5	3
151	Neuroimaging correlates of false memory in 'Alzheimer's disease: A preliminary systematic review. <i>Psychiatry Research - Neuroimaging</i> , 2020 , 296, 111021	2.9	4
150	A general model of hippocampal and dorsal striatal learning and decision making. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31427-31437	11.5	12
149	Neuronal vector coding in spatial cognition. <i>Nature Reviews Neuroscience</i> , 2020 , 21, 453-470	13.5	34
148	Huntington's disease patients display progressive deficits in hippocampal-dependent cognition during a task of spatial memory. <i>Cortex</i> , 2019 , 119, 417-427	3.8	12
147	Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. <i>Brain</i> , 2019 , 142, 1751-1766	11.2	70
146	A neural-level model of spatial memory and imagery. ELife, 2018, 7,	8.9	70
145	Spatial cell firing during virtual navigation of open arenas by head-restrained mice. <i>ELife</i> , 2018 , 7,	8.9	28
144	Negative emotional content disrupts the coherence of episodic memories. <i>Journal of Experimental Psychology: General</i> , 2018 , 147, 243-256	4.7	40
143	Human hippocampal theta power indicates movement onset and distance travelled. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 12297-12302	11.5	51
142	Differential effects of negative emotion on memory for items and associations, and their relationship to intrusive imagery. <i>Current Opinion in Behavioral Sciences</i> , 2017 , 17, 124-132	4	33
141	Modulating medial septal cholinergic activity reduces medial entorhinal theta frequency without affecting speed or grid coding. <i>Scientific Reports</i> , 2017 , 7, 14573	4.9	21
140	Medial Prefrontal-Medial Temporal Theta Phase Coupling in Dynamic Spatial Imagery. <i>Journal of Cognitive Neuroscience</i> , 2017 , 29, 507-519	3.1	22
139	The Neural Representation of Prospective Choice during Spatial Planning and Decisions. <i>PLoS Biology</i> , 2017 , 15, e1002588	9.7	43
138	Environmental Anchoring of Head Direction in a Computational Model of Retrosplenial Cortex. <i>Journal of Neuroscience</i> , 2016 , 36, 11601-11618	6.6	43
137	Ventromedial prefrontal cortex, adding value to autobiographical memories. <i>Scientific Reports</i> , 2016 , 6, 28630	4.9	18

(2015-2016)

136	The 4 Mountains Test: A Short Test of Spatial Memory with High Sensitivity for the Diagnosis of Pre-dementia Alzheimer's Disease. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	20
135	How environment and self-motion combine in neural representations of space. <i>Journal of Physiology</i> , 2016 , 594, 6535-6546	3.9	28
134	Hippocampal Attractor Dynamics Predict Memory-Based Decision Making. <i>Current Biology</i> , 2016 , 26, 1750-1757	6.3	21
133	Opposing effects of negative emotion on amygdalar and hippocampal memory for items and associations. <i>Social Cognitive and Affective Neuroscience</i> , 2016 , 11, 981-90	4	52
132	Grid-like Processing of Imagined Navigation. <i>Current Biology</i> , 2016 , 26, 842-7	6.3	94
131	How vision and self-motion combine or compete during path reproduction changes with age. <i>Scientific Reports</i> , 2016 , 6, 29163	4.9	26
130	Disrupting the Grid Cells' Need for Speed. <i>Neuron</i> , 2016 , 91, 502-3	13.9	
129	The role of spatial boundaries in shaping long-term event representations. <i>Cognition</i> , 2016 , 154, 151-16	4 3.5	77
128	Grid cells form a global representation of connected environments. <i>Current Biology</i> , 2015 , 25, 1176-82	6.3	74
127	Evidence for holistic episodic recollection via hippocampal pattern completion. <i>Nature Communications</i> , 2015 , 6, 7462	17.4	145
126	Interaction Between Hippocampus and Cerebellum Crus I in Sequence-Based but not Place-Based Navigation. <i>Cerebral Cortex</i> , 2015 , 25, 4146-54	5.1	71
125	How cumulative error in grid cell firing is literally bounded by the environment. <i>Neuron</i> , 2015 , 86, 607-9	13.9	1
124	Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation. <i>Journal of Neuroscience</i> , 2015 , 35, 14123-31	6.6	51
123	Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex. <i>Journal of Neuroscience</i> , 2015 , 35, 14426-34	6.6	83
122	Using Grid Cells for Navigation. <i>Neuron</i> , 2015 , 87, 507-20	13.9	120
121	The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions. <i>Neuron</i> , 2015 , 88, 64-77	13.9	111
120	Extinction learning is slower, weaker and less context specific after alcohol. <i>Neurobiology of Learning and Memory</i> , 2015 , 125, 55-62	3.1	9
119	Medial Prefrontal Cortex: Adding Value to Imagined Scenarios. <i>Journal of Cognitive Neuroscience</i> , 2015 , 27, 1957-67	3.1	23

118	Human hippocampal processing of environmental novelty during spatial navigation. <i>Hippocampus</i> , 2014 , 24, 740-50	3.5	37
117	Boundary coding in the rat subiculum. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20120514	5.8	53
116	Space in the brain: how the hippocampal formation supports spatial cognition. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20120510	5.8	271
115	What do grid cells contribute to place cell firing?. <i>Trends in Neurosciences</i> , 2014 , 37, 136-45	13.3	80
114	Controlling phase noise in oscillatory interference models of grid cell firing. <i>Journal of Neuroscience</i> , 2014 , 34, 6224-32	6.6	12
113	Neural mechanisms of self-location. <i>Current Biology</i> , 2014 , 24, R330-9	6.3	99
112	Pattern completion in multielement event engrams. Current Biology, 2014, 24, 988-92	6.3	50
111	Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism. <i>Biological Psychiatry</i> , 2014 , 76, 585-93	7.9	90
110	Contextualisation in the revised dual representation theory of PTSD: a response to Pearson and colleagues. <i>Journal of Behavior Therapy and Experimental Psychiatry</i> , 2014 , 45, 217-9	2.6	29
109	Are new place representations independent of theta and path integration?. <i>Neuron</i> , 2014 , 82, 721-2	13.9	1
108	Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations. <i>Frontiers in Human Neuroscience</i> , 2014 , 8, 709	3.3	35
107	The 2014 Nobel Prize in Physiology or Medicine: a spatial model for cognitive neuroscience. <i>Neuron</i> , 2014 , 84, 1120-5	13.9	34
106	Medial prefrontal theta phase coupling during spatial memory retrieval. <i>Hippocampus</i> , 2014 , 24, 656-65	3.5	70
105	Theta phase precession of grid and place cell firing in open environments. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20120532	5.8	52
104	Optimal configurations of spatial scale for grid cell firing under noise and uncertainty. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20130290	5.8	20
103	A hybrid oscillatory interference/continuous attractor network model of grid cell firing. <i>Journal of Neuroscience</i> , 2014 , 34, 5065-79	6.6	86
102	The Function of Oscillations in the Hippocampal Formation 2014 , 303-350		4
101	Specific evidence of low-dimensional continuous attractor dynamics in grid cells. <i>Nature Neuroscience</i> , 2013 , 16, 1077-84	25.5	163

(2011-2013)

100	How vision and movement combine in the hippocampal place code. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 378-83	11.5	208
99	Evidence for encoding versus retrieval scheduling in the hippocampus by theta phase and acetylcholine. <i>Journal of Neuroscience</i> , 2013 , 33, 8689-704	6.6	82
98	Novelty and anxiolytic drugs dissociate two components of hippocampal theta in behaving rats. Journal of Neuroscience, 2013 , 33, 8650-67	6.6	59
97	Negative affect impairs associative memory but not item memory. <i>Learning and Memory</i> , 2013 , 21, 21-7	2.8	66
96	Forward and backward inference in spatial cognition. <i>PLoS Computational Biology</i> , 2013 , 9, e1003383	5	51
95	The associative structure of memory for multi-element events. <i>Journal of Experimental Psychology: General</i> , 2013 , 142, 1370-83	4.7	50
94	Imagining being somewhere else: neural basis of changing perspective in space. <i>Cerebral Cortex</i> , 2012 , 22, 166-74	5.1	96
93	Neural representations of location composed of spatially periodic bands. <i>Science</i> , 2012 , 337, 853-7	33.3	109
92	The virtues of youth and maturity (in dentate granule cells). Cell, 2012, 149, 18-20	56.2	3
91	Models of grid cells and theta oscillations. <i>Nature</i> , 2012 , 488, E1-2; discussion E2-3	50.4	32
91	Models of grid cells and theta oscillations. <i>Nature</i> , 2012 , 488, E1-2; discussion E2-3 Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning. <i>PLoS Biology</i> , 2012 , 10, e1001267	50.4 9.7	32 94
	Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning. <i>PLoS</i>		
90	Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning. <i>PLoS Biology</i> , 2012 , 10, e1001267	9.7	94
90	Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning. <i>PLoS Biology</i> , 2012 , 10, e1001267 From cells to systems: grids and boundaries in spatial memory. <i>Neuroscientist</i> , 2012 , 18, 556-66 The hippocampus and spatial constraints on mental imagery. <i>Frontiers in Human Neuroscience</i> , 2012	9.7 7.6 3.3	94
90 89 88	Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning. <i>PLoS Biology</i> , 2012 , 10, e1001267 From cells to systems: grids and boundaries in spatial memory. <i>Neuroscientist</i> , 2012 , 18, 556-66 The hippocampus and spatial constraints on mental imagery. <i>Frontiers in Human Neuroscience</i> , 2012 , 6, 142 Grid cell firing patterns signal environmental novelty by expansion. <i>Proceedings of the National</i>	9.7 7.6 3.3	94 8 16
90 89 88 87	Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning. <i>PLoS Biology</i> , 2012 , 10, e1001267 From cells to systems: grids and boundaries in spatial memory. <i>Neuroscientist</i> , 2012 , 18, 556-66 The hippocampus and spatial constraints on mental imagery. <i>Frontiers in Human Neuroscience</i> , 2012 , 6, 142 Grid cell firing patterns signal environmental novelty by expansion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 17687-92	9.7 7.6 3.3 11.5	94 8 16
90 89 88 87 86	Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning. <i>PLoS Biology</i> , 2012 , 10, e1001267 From cells to systems: grids and boundaries in spatial memory. <i>Neuroscientist</i> , 2012 , 18, 556-66 The hippocampus and spatial constraints on mental imagery. <i>Frontiers in Human Neuroscience</i> , 2012 , 6, 142 Grid cell firing patterns signal environmental novelty by expansion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 17687-92 Temporal Neuronal Oscillations can Produce Spatial Phase Codes 2011 , 59-69	9.7 7.6 3.3 11.5	94 8 16 131

82	Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 1152-7	11.5	69
81	Evidence for grid cells in a human memory network. <i>Nature</i> , 2010 , 463, 657-61	50.4	691
80	The role of landmarks and boundaries in the development of spatial memory. <i>Developmental Science</i> , 2010 , 13, 170-80	4.5	79
79	Lateralized human hippocampal activity predicts navigation based on sequence or place memory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 14466-71	11.5	193
78	Establishing the boundaries: the hippocampal contribution to imagining scenes. <i>Journal of Neuroscience</i> , 2010 , 30, 11688-95	6.6	77
77	Intrusive images in psychological disorders: characteristics, neural mechanisms, and treatment implications. <i>Psychological Review</i> , 2010 , 117, 210-32	6.3	713
76	Acute effects of alcohol on intrusive memory development and viewpoint dependence in spatial memory support a dual representation model. <i>Biological Psychiatry</i> , 2010 , 68, 280-6	7.9	44
75	Development of the hippocampal cognitive map in preweanling rats. <i>Science</i> , 2010 , 328, 1573-6	33.3	686
74	Topographical short-term memory differentiates Alzheimer's disease from frontotemporal lobar degeneration. <i>Hippocampus</i> , 2010 , 20, 1154-69	3.5	83
73	Lost and found: bespoke memory testing for Alzheimer's disease and semantic dementia. <i>Journal of Alzheimer</i> Disease, 2010 , 21, 1347-65	4.3	65
72	Brain oscillations and memory. Current Opinion in Neurobiology, 2010, 20, 143-9	7.6	222
71	Environmental novelty elicits a later theta phase of firing in CA1 but not subiculum. <i>Hippocampus</i> , 2010 , 20, 229-34	3.5	45
70	Boundary vector cells in the subiculum of the hippocampal formation. <i>Journal of Neuroscience</i> , 2009 , 29, 9771-7	6.6	474
69	Neural bases of autobiographical support for episodic recollection of faces. <i>Hippocampus</i> , 2009 , 19, 718	8- <u>3.</u> 9	48
68	Hippocampal theta frequency, novelty, and behavior. <i>Hippocampus</i> , 2009 , 19, 409-410	3.5	11
67	Slave to the rhythm: Experimental tests of a model for verbal short-term memory and long-term sequence learning. <i>Journal of Memory and Language</i> , 2009 , 61, 97-111	3.8	28
66	The hippocampus and memory: insights from spatial processing. <i>Nature Reviews Neuroscience</i> , 2008 , 9, 182-94	13.5	693
65	Children reorient using the left/right sense of coloured landmarks at 18-24 months. <i>Cognition</i> , 2008 , 106, 519-27	3.5	40

(2006-2008)

64	The hippocampus supports recognition memory for familiar words but not unfamiliar faces. <i>Current Biology</i> , 2008 , 18, 1932-6	6.3	44
63	Frontal eye fields involved in shifting frame of reference within working memory for scenes. <i>Neuropsychologia</i> , 2008 , 46, 399-408	3.2	52
62	Impaired memory for scenes but not faces in developmental hippocampal amnesia: a case study. <i>Neuropsychologia</i> , 2008 , 46, 1050-9	3.2	44
61	Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 5909-14	11.5	210
60	Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 5915-20	11.5	392
59	Environmental novelty is signaled by reduction of the hippocampal theta frequency. <i>Hippocampus</i> , 2008 , 18, 340-8	3.5	130
58	Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats. <i>Hippocampus</i> , 2008 , 18, 1175-85	3.5	143
57	Grid cells and theta as oscillatory interference: theory and predictions. <i>Hippocampus</i> , 2008 , 18, 1157-74	3.5	198
56	Spatial cognition and the brain. Annals of the New York Academy of Sciences, 2008, 1124, 77-97	6.5	360
55	Remembering the past and imagining the future: a neural model of spatial memory and imagery. <i>Psychological Review</i> , 2007 , 114, 340-75	6.3	647
54	The hippocampus is required for short-term topographical memory in humans. <i>Hippocampus</i> , 2007 , 17, 34-48	3.5	247
53	Learning in a geometric model of place cell firing. <i>Hippocampus</i> , 2007 , 17, 786-800	3.5	37
52	An oscillatory interference model of grid cell firing. <i>Hippocampus</i> , 2007 , 17, 801-12	3.5	524
51	Experience-dependent rescaling of entorhinal grids. <i>Nature Neuroscience</i> , 2007 , 10, 682-4	25.5	396
50	A revised model of short-term memory and long-term learning of verbal sequences. <i>Journal of Memory and Language</i> , 2006 , 55, 627-652	3.8	189
49	Differential developmental trajectories for egocentric, environmental and intrinsic frames of reference in spatial memory. <i>Cognition</i> , 2006 , 101, 153-72	3.5	123
48	The boundary vector cell model of place cell firing and spatial memory. <i>Reviews in the Neurosciences</i> , 2006 , 17, 71-97	4.7	233
47	Doing the right thing: a common neural circuit for appropriate violent or compassionate behavior. Neurolmage, 2006, 30, 1069-76	7.9	68

46	Parallel memory systems for talking about location and age in precuneus, caudate and Broca's region. <i>NeuroImage</i> , 2006 , 32, 1850-64	7.9	81
45	A metric for the cognitive map: found at last?. <i>Trends in Cognitive Sciences</i> , 2006 , 10, 1-3	14	73
44	Spatial memory: how egocentric and allocentric combine. <i>Trends in Cognitive Sciences</i> , 2006 , 10, 551-7	14	517
43	Anterior prefrontal involvement in episodic retrieval reflects contextual interference. <i>NeuroImage</i> , 2005 , 28, 256-67	7.9	40
42	Computational models of working memory: putting long-term memory into context. <i>Trends in Cognitive Sciences</i> , 2005 , 9, 535-41	14	100
41	Complementary memory systems: competition, cooperation and compensation. <i>Trends in Neurosciences</i> , 2005 , 28, 169-70	13.3	66
40	Attractor dynamics in the hippocampal representation of the local environment. Science, 2005, 308, 87	3-5 3.3	455
39	Characterizing multiple independent behavioral correlates of cell firing in freely moving animals. Hippocampus, 2005 , 15, 149-53	3.5	31
38	Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. <i>Hippocampus</i> , 2005 , 15, 853-66	3.5	590
37	Theta-modulated place-by-direction cells in the hippocampal formation in the rat. <i>Journal of Neuroscience</i> , 2004 , 24, 8265-77	6.6	121
36	Geometric determinants of human spatial memory. <i>Cognition</i> , 2004 , 94, 39-75	3.5	117
35	Orientational manoeuvres in the dark: dissociating allocentric and egocentric influences on spatial memory. <i>Cognition</i> , 2004 , 94, 149-66	3.5	111
34	The hippocampal role in spatial memory and the familiarityrecollection distinction: a case study. <i>Neuropsychology</i> , 2004 , 18, 405-17	3.8	68
33	Selective interference with verbal short-term memory for serial order information: a new paradigm and tests of a timing-signal hypothesis. <i>Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology</i> , 2003 , 56, 1307-34		73
32	Navigation expertise and the human hippocampus: a structural brain imaging analysis. <i>Hippocampus</i> , 2003 , 13, 250-9	3.5	252
31	Independent rate and temporal coding in hippocampal pyramidal cells. <i>Nature</i> , 2003 , 425, 828-32	50.4	427
30	Neural representations in human spatial memory. <i>Trends in Cognitive Sciences</i> , 2003 , 7, 517-9	14	26
29	The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. <i>Neuron</i> , 2003 , 37, 877-88	13.9	658

28	Human hippocampus and viewpoint dependence in spatial memory. Hippocampus, 2002, 12, 811-20	3.5	219
27	What can the hippocampal representation of environmental geometry tell us about Hebbian learning?. <i>Biological Cybernetics</i> , 2002 , 87, 356-72	2.8	29
26	Long-term plasticity in hippocampal place-cell representation of environmental geometry. <i>Nature</i> , 2002 , 416, 90-4	50.4	335
25	The hippocampus, space, and viewpoints in episodic memory. <i>Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology</i> , 2002 , 55, 1057-80		93
24	Neurodevelopmental aspects of spatial navigation: a virtual reality fMRI study. <i>NeuroImage</i> , 2002 , 15, 396-406	7.9	93
23	The human hippocampus and spatial and episodic memory. <i>Neuron</i> , 2002 , 35, 625-41	13.9	1612
22	Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. <i>Brain</i> , 2001 , 124, 2476-89	11.2	228
21	Bilateral hippocampal pathology impairs topographical and episodic memory but not visual pattern matching. <i>Hippocampus</i> , 2001 , 11, 715-25	3.5	166
20	Hippocampal amnesia. <i>Neurocase</i> , 2001 , 7, 357-82	0.8	212
19	A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. <i>Neurolmage</i> , 2001 , 14, 439-53	7.9	404
18	Modeling place fields in terms of the cortical inputs to the hippocampus. <i>Hippocampus</i> , 2000 , 10, 369-7	93.5	278
17	Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. <i>Neuropsychologia</i> , 2000 , 38, 426-40	3.2	274
16	Predictions derived from modelling the hippocampal role in navigation. <i>Biological Cybernetics</i> , 2000 , 83, 301-12	2.8	123
15	Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates. <i>Current Opinion in Neurobiology</i> , 1999 , 9, 171-7	7.6	239
14	Theta activity, virtual navigation and the human hippocampus. <i>Trends in Cognitive Sciences</i> , 1999 , 3, 403	8- 4 046	67
13	Knowing where and getting there: a human navigation network. <i>Science</i> , 1998 , 280, 921-4	33.3	1018
12	Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. <i>Journal of Cognitive Neuroscience</i> , 1998 , 10, 61-76	3.1	319
11	Using a Mobile Robot to Test a Model of the Rat Hippocampus. <i>Connection Science</i> , 1998 , 10, 291-300	2.8	45

10	Introduction to What are the parietal and hippocampal contributions to spatial cognition?, the proceedings of a Discussion held at The Royal Society. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1997 , 352, 1397-1399	5.8	3
9	Directional control of hippocampal place fields. <i>Experimental Brain Research</i> , 1997 , 117, 131-42	2.3	73
8	Neuronal computations underlying the firing of place cells and their role in navigation. <i>Hippocampus</i> , 1996 , 6, 749-62	3.5	217
7	Geometric determinants of the place fields of hippocampal neurons. <i>Nature</i> , 1996 , 381, 425-8	50.4	828
6	A constructive algorithm that converges for real-valued input patterns. <i>International Journal of Neural Systems</i> , 1994 , 5, 59-66	6.2	37
5	A model of hippocampal function. <i>Neural Networks</i> , 1994 , 7, 1065-1081	9.1	288
4	Toward a network model of the articulatory loop*1. <i>Journal of Memory and Language</i> , 1992 , 31, 429-46	03.8	274
3	Neural network models of list learning		2
2	Environmental anchoring of grid-like representations minimizes spatial uncertainty during navigation		1
1	To be a Grid Cell: Shuffling procedures for determining G ridness		9