
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7489855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	cDNA cloning and structure of mouse putative Ah receptor. Biochemical and Biophysical Research Communications, 1992, 184, 246-253.	2.1	396
2	Subventricular Zone-Derived Neural Progenitor Cells Migrate Along a Blood Vessel Scaffold Toward The Post-stroke Striatum. Stem Cells, 2010, 28, 545-554.	3.2	261
3	Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood, 2006, 107, 111-117.	1.4	259
4	Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes and Development, 2003, 17, 380-393.	5.9	232
5	Neurons Limit Angiogenesis by Titrating VEGF in Retina. Cell, 2014, 159, 584-596.	28.9	232
6	Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7368-7373.	7.1	221
7	HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO Journal, 2003, 22, 1134-1146.	7.8	220
8	Vascular Endothelial Growth Factor A Signaling in the Podocyte-Endothelial Compartment Is Required for Mesangial Cell Migration and Survival. Journal of the American Society of Nephrology: JASN, 2006, 17, 724-735.	6.1	217
9	Krüppel-like factor 5 Is Essential for Blastocyst Development and the Normal Self-Renewal of Mouse ESCs. Cell Stem Cell, 2008, 3, 555-567.	11.1	177
10	Roles of VEGF-A signalling in development, regeneration, and tumours. Journal of Biochemistry, 2014, 156, 1-10.	1.7	159
11	Transcriptionally Active Heterodimer Formation of an Arnt-like PAS Protein, Arnt3, with HIF-1a, HLF, and Clock. Biochemical and Biophysical Research Communications, 1998, 248, 789-794.	2.1	128
12	Compensatory signalling induced in the yolk sac vasculature by deletion of TGFÎ ² receptors in mice. Journal of Cell Science, 2007, 120, 4269-4277.	2.0	104
13	Defective development of secretory neurones in the hypothalamus of Arnt2â€knockout mice. Genes To Cells, 2001, 6, 361-374.	1.2	99
14	Vascular Endothelial Growth Factor Directly Inhibits Primitive Neural Stem Cell Survival But Promotes Definitive Neural Stem Cell Survival. Journal of Neuroscience, 2006, 26, 6803-6812.	3.6	95
15	Mild Impairment of Learning and Memory in Mice Overexpressing the mSim2 Gene Located on Chromosome 16: An Animal Model of Down's Syndrome. Human Molecular Genetics, 1999, 8, 1409-1415.	2.9	79
16	Regulation of Dioxin Receptor Function by Omeprazole. Journal of Biological Chemistry, 1997, 272, 12705-12713.	3.4	72
17	Cell Fate Decisions in Early Blood Vessel Formation. Trends in Cardiovascular Medicine, 2003, 13, 254-259.	4.9	69
18	Indefinite Self-Renewal of ESCs through Myc/Max Transcriptional Complex-Independent Mechanisms. Cell Stem Cell, 2011, 9, 37-49.	11.1	64

#	Article	IF	CITATIONS
19	RNA content in the nucleolus alters p53 acetylation via MYBBP1A. EMBO Journal, 2011, 30, 1054-1066.	7.8	62
20	Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1 Is Necessary for Normal Endochondral Ossification and Aggrecan Metabolism. Journal of Biological Chemistry, 2011, 286, 5803-5812.	3.4	60
21	Runx1 is involved in primitive erythropoiesis in the mouse. Blood, 2008, 111, 4075-4080.	1.4	59
22	Thyroid hormone triggers the developmental loss of axonal regenerative capacity via thyroid hormone receptor α1 and krüppel-like factor 9 in Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14206-14211.	7.1	56
23	Novel ROSA26 Cre-reporter Knock-in C57BL/6N Mice Exhibiting Green Emission before and Red Emission after Cre-mediated Recombination. Experimental Animals, 2013, 62, 295-304.	1.1	53
24	cDNA Cloning of a Murine Homologue ofDrosophilaSingle-Minded, Its mRNA Expression in Mouse Development, and Chromosome Localization. Biochemical and Biophysical Research Communications, 1996, 218, 588-594.	2.1	50
25	Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice. Human Molecular Genetics, 2010, 19, 4145-4159.	2.9	49
26	Characterization of GATA-1+ hemangioblastic cells in the mouse embryo. EMBO Journal, 2007, 26, 184-196.	7.8	48
27	Rapid Isolation of Glomeruli Coupled with Gene Expression Profiling Identifies Downstream Targets in Pod1 Knockout Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 3247-3255.	6.1	46
28	Hepatocyte ELOVL Fatty Acid Elongase 6 Determines Ceramide Acylâ€Chain Length and Hepatic Insulin Sensitivity in Mice. Hepatology, 2020, 71, 1609-1625.	7.3	44
29	Developmental regression of hyaloid vasculature is triggered by neurons. Journal of Experimental Medicine, 2016, 213, 1175-1183.	8.5	43
30	Flk1-GFP BAC Tg Mice: An Animal Model for the Study of Blood Vessel Development. Experimental Animals, 2010, 59, 615-622.	1.1	42
31	Antitumor effects of 2â€oxoglutarate through inhibition of angiogenesis in a murine tumor model. Cancer Science, 2009, 100, 1639-1647.	3.9	41
32	Induction of the germ cell fate from pluripotent stem cells in cynomolgus monkeysâ€. Biology of Reproduction, 2020, 102, 620-638.	2.7	40
33	Heterodimers of bHLH-PAS Protein Fragments Derived from AhR, AhRR, and Arnt Prepared by Co-Expression in Escherichia coli: Characterization of Their DNA Binding Activity and Preparation of a DNA Complex. Journal of Biochemistry, 2003, 134, 83-90.	1.7	35
34	Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow. Thrombosis and Haemostasis, 2014, 112, 743-756.	3.4	35
35	Isolation and function of mouse tissue resident vascular precursors marked by myelin protein zero. Journal of Experimental Medicine, 2011, 208, 949-960.	8.5	34
36	Monkeys mutant for PKD1 recapitulate human autosomal dominant polycystic kidney disease. Nature Communications, 2019, 10, 5517.	12.8	33

#	Article	IF	CITATIONS
37	The X chromosome dosage compensation program during the development of cynomolgus monkeys. Science, 2021, 374, eabd8887.	12.6	33
38	Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming. PLoS ONE, 2016, 11, e0150715.	2.5	29
39	Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis, 2017, 20, 581-598.	7.2	28
40	Inhibition of Ubiquitin Ligase F-box and WD Repeat Domain-containing 7α (Fbw7α) Causes Hepatosteatosis through Krüppel-like Factor 5 (KLF5)/Peroxisome Proliferator-activated Receptor γ2 (PPARγ2) Pathway but Not SREBP-1c Protein in Mice*. Journal of Biological Chemistry, 2011, 286, 40835-40846.	3.4	24
41	Generation and Characterization of Ins1-cre-driver C57BL/6N for Exclusive Pancreatic Beta Cell-specific Cre-loxP Recombination. Experimental Animals, 2014, 63, 183-191.	1.1	24
42	<i>Klf5</i> maintains the balance of primitive endoderm to epiblast specification during mouse embryonic development by suppression of <i>Fgf4</i> . Development (Cambridge), 2017, 144, 3706-3718.	2.5	24
43	Regulation of ERK signalling pathway in the developing mouse blastocyst. Development (Cambridge), 2019, 146, .	2.5	23
44	The E3 Ubiquitin Ligase Activity of Trip12 Is Essential for Mouse Embryogenesis. PLoS ONE, 2011, 6, e25871.	2.5	22
45	Klf9 is necessary and sufficient for Purkinje cell survival in organotypic culture. Molecular and Cellular Neurosciences, 2013, 54, 9-21.	2.2	22
46	Aging of the Vascular System and Neural Diseases. Frontiers in Aging Neuroscience, 2020, 12, 557384.	3.4	21
47	Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Laboratory Investigation, 2009, 89, 800-810.	3.7	19
48	Highly efficient induction of primate iPS cells by combining RNA transfection and chemical compounds. Genes To Cells, 2019, 24, 473-484.	1.2	19
49	Intersection of regulatory pathways controlling hemostasis and hemochorial placentation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
50	Distinct expression patterns of Flk1 and Flt1 in the coronary vascular system during development and after myocardial infarction. Biochemical and Biophysical Research Communications, 2018, 495, 884-891.	2.1	18
51	In Vivo Function and Evolution of the Eutherian-Specific Pluripotency Marker UTF1. PLoS ONE, 2013, 8, e68119.	2.5	17
52	Klf5 suppresses ERK signaling in mouse pluripotent stem cells. PLoS ONE, 2018, 13, e0207321.	2.5	17
53	Activated Fps/Fes partially rescues the in vivo developmental potential of Flk1-deficient vascular progenitor cells. Blood, 2004, 103, 912-920.	1.4	15
54	Fluorescent reporter transgenic mice for in vivo live imaging of angiogenesis and lymphangiogenesis. Angiogenesis, 2018, 21, 677-698.	7.2	15

#	Article	IF	CITATIONS
55	Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells. PLoS ONE, 2016, 11, e0159246.	2.5	14
56	The transcription factor Klf5 is essential for intrahepatic biliary epithelial tissue remodeling after cholestatic liver injury. Journal of Biological Chemistry, 2018, 293, 6214-6229.	3.4	14
57	Functional Compensation Between Myc and PI3K Signaling Supports Self-Renewal of Embryonic Stem Cells, 2015, 33, 713-725.	3.2	13
58	Bioluminescence Imaging of \hat{l}^2 Cells and Intrahepatic Insulin Gene Activity under Normal and Pathological Conditions. PLoS ONE, 2013, 8, e60411.	2.5	13
59	Interaction of the nervous system and vascular system is required for the proper assembly of the neocortex. Neurochemistry International, 2019, 129, 104481.	3.8	12
60	Comprehensive evaluation of ubiquitous promoters suitable for the generation of transgenic cynomolgus monkeysâ€. Biology of Reproduction, 2019, 100, 1440-1452.	2.7	12
61	Generating Vegfr3 reporter transgenic mouse expressing membrane-tagged Venus for visualization of VEGFR3 expression in vascular and lymphatic endothelial cells. PLoS ONE, 2019, 14, e0210060.	2.5	11
62	Delayed cutaneous wound healing in Fam129b/Minerva-deficient mice. Journal of Biochemistry, 2012, 152, 549-555.	1.7	10
63	Neuron-derived VEGF contributes to cortical and hippocampal development independently of VEGFR1/2-mediated neurotrophism. Developmental Biology, 2020, 459, 65-71.	2.0	10
64	Establishment of macaque trophoblast stem cell lines derived from cynomolgus monkey blastocysts. Scientific Reports, 2020, 10, 6827.	3.3	10
65	Chromosomal-scale de novo genome assemblies of Cynomolgus Macaque and Common Marmoset. Scientific Data, 2021, 8, 159.	5.3	9
66	Simultaneous fluorescence imaging of distinct nerve and blood vessel patterns in dual Thy1-YFP and Flt1-DsRed transgenic mice. Angiogenesis, 2020, 23, 459-477.	7.2	7
67	Flt1 and Flk1 mediate regulation of intraocular pressure and their double heterozygosity causes the buphthalmia in mice. Biochemical and Biophysical Research Communications, 2012, 420, 422-427.	2.1	6
68	Forced Expression of Nanog or Esrrb Preserves the ESC Status in the Absence of Nucleostemin Expression. Stem Cells, 2015, 33, 1089-1101.	3.2	6
69	Genetic evidence of PEBP2Î ² -independent activation of Runx1 in the murine embryo. International Journal of Hematology, 2008, 88, 134-138.	1.6	5
70	The dynamics of revascularization after white matter infarction monitored in Flt1-tdsRed and Flk1-GFP mice. Neuroscience Letters, 2019, 692, 70-76.	2.1	5
71	Generation of an OCT3/4 reporter cynomolgus monkey ES cell line using CRISPR/Cas9. Stem Cell Research, 2019, 37, 101439.	0.7	4
72	Quantification of Angiogenesis and Lymphangiogenesis in the Dual ex vivo Aortic and Thoracic Duct Assay. Protein and Peptide Letters, 2019, 27, 30-40.	0.9	4

#	Article	IF	CITATIONS
73	A New Model for Specific Visualization of Skin Graft Neoangiogenesis Using Flt1-tdsRed BAC Transgenic Mice. Plastic and Reconstructive Surgery, 2021, 148, 89-99.	1.4	2
74	Macrophages fine-tune pupil shape during development. Developmental Biology, 2020, 464, 137-144.	2.0	1