Hai-Bin Yu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7489563/hai-bin-yu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36
papers

2,035
citations

20
h-index

38
g-index

38
ext. papers

2,343
ext. citations

8.1
avg, IF
L-index

#	Paper	IF	Citations
36	Dynamic heterogeneity, cooperative motion, and Johari-Goldstein [Formula: see text]-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition. <i>European Physical Journal E</i> , 2021 , 44, 56	1.5	7
35	Fast dynamics in a model metallic glass-forming material. <i>Journal of Chemical Physics</i> , 2021 , 154, 08450	53.9	9
34	Three-Dimensional Hierarchical Porous Structures of Metallic Glass/Copper Composite Catalysts by 3D Printing for Efficient Wastewater Treatments. <i>ACS Applied Materials & Description of the Property of the </i>	7 ⁹ 7 ⁵ 237	, 11
33	Metallic Nanoglasses with Promoted Erelaxation and Tensile Plasticity. <i>Nano Letters</i> , 2021 , 21, 6051-60	56 1.5	7
32	Engineering Microdomains of Oxides in High-Entropy Alloy Electrodes toward Efficient Oxygen Evolution. <i>Advanced Materials</i> , 2021 , 33, e2101845	24	18
31	Shadow glass transition as a thermodynamic signature of Irelaxation in hyper-quenched metallic glasses. <i>National Science Review</i> , 2020 , 7, 1896-1905	10.8	30
30	Uncovering Eelaxations in amorphous phase-change materials. <i>Science Advances</i> , 2020 , 6, eaay6726	14.3	13
29	Unraveling strongly entropic effect on Felaxation in metallic glass: Insights from enhanced atomistic samplings over experimentally relevant timescales. <i>Physical Review B</i> , 2020 , 102,	3.3	1
28	Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility. <i>Science China Materials</i> , 2020 , 63, 157-16	4 ^{7.1}	4
27	Predicting Complex Relaxation Processes in Metallic Glass. <i>Physical Review Letters</i> , 2019 , 123, 105701	7.4	20
26	Structural origin for vibration-induced accelerated aging and rejuvenation in metallic glasses. <i>Journal of Chemical Physics</i> , 2019 , 150, 204507	3.9	11
25	Anomalous nonlinear damping in metallic glasses: Signature of elasticity breakdown. <i>Journal of Chemical Physics</i> , 2019 , 150, 111104	3.9	4
24	Fundamental Link between Relaxation, Excess Wings, and Cage-Breaking in Metallic Glasses. Journal of Physical Chemistry Letters, 2018 , 9, 5877-5883	6.4	32
23	Relating Ultrastable Glass Formation to Enhanced Surface Diffusion via the Johari-Goldstein Relaxation in Molecular Glasses. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2739-2744	6.4	20
22	Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses. <i>Science Advances</i> , 2017 , 3, e1701577	14.3	89
21	Nonlinear fragile-to-strong transition in a magnetic glass system driven by magnetic field. <i>AIP Advances</i> , 2017 , 7, 125014	1.5	2
20	Correlation between Viscoelastic Moduli and Atomic Rearrangements in Metallic Glasses. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3747-3751	6.4	13

(2009-2015)

19	Unified Criterion for Temperature-Induced and Strain-Driven Glass Transitions in Metallic Glass. <i>Physical Review Letters</i> , 2015 , 115, 135701	7.4	28
18	Suppression of IRelaxation in Vapor-Deposited Ultrastable Glasses. <i>Physical Review Letters</i> , 2015 , 115, 185501	7.4	97
17	Strain induced fragility transition in metallic glass. <i>Nature Communications</i> , 2015 , 6, 7179	17.4	25
16	Atomic mechanism of internal friction in a model metallic glass. <i>Physical Review B</i> , 2014 , 90,	3.3	41
15	The Erelaxation in metallic glasses. <i>National Science Review</i> , 2014 , 1, 429-461	10.8	160
14	Origin of ultrafast Ag radiotracer diffusion in shear bands of deformed bulk metallic glass Pd40Ni40P20. <i>Journal of Applied Physics</i> , 2013 , 113, 103508	2.5	17
13	The Irelaxation in metallic glasses: an overview. <i>Materials Today</i> , 2013 , 16, 183-191	21.8	243
12	Ultrastable metallic glass. Advanced Materials, 2013, 25, 5904-8	24	131
11	Chemical influence on Erelaxations and the formation of molecule-like metallic glasses. <i>Nature Communications</i> , 2013 , 4, 2204	17.4	107
	A connection between the structural Erelaxation and the Erelaxation found in bulk metallic		
10	glass-formers. Journal of Chemical Physics, 2013 , 139, 014502	3.9	31
9	glass-formers. <i>Journal of Chemical Physics</i> , 2013 , 139, 014502 The activation energy and volume of flow units of metallic glasses. <i>Scripta Materialia</i> , 2012 , 67, 9-12	3.9 5.6	122
9	The activation energy and volume of flow units of metallic glasses. <i>Scripta Materialia</i> , 2012 , 67, 9-12 Tensile plasticity in metallic glasses with pronounced [relaxations. <i>Physical Review Letters</i> , 2012 ,	5.6	122
9	The activation energy and volume of flow units of metallic glasses. <i>Scripta Materialia</i> , 2012 , 67, 9-12 Tensile plasticity in metallic glasses with pronounced [relaxations. <i>Physical Review Letters</i> , 2012 , 108, 015504 Relation between [relaxation and fragility in LaCe-based metallic glasses. <i>Journal of</i>	5.6 7·4	122
9 8 7	The activation energy and volume of flow units of metallic glasses. <i>Scripta Materialia</i> , 2012 , 67, 9-12 Tensile plasticity in metallic glasses with pronounced Felaxations. <i>Physical Review Letters</i> , 2012 , 108, 015504 Relation between Felaxation and fragility in LaCe-based metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 869-871 Regenerator performance below 4 K in Tm-based bulk metallic glasses. <i>Journal of Non-Crystalline</i>	5.6 7.4 3.9	122 204 40
9 8 7	The activation energy and volume of flow units of metallic glasses. <i>Scripta Materialia</i> , 2012 , 67, 9-12 Tensile plasticity in metallic glasses with pronounced (Felaxations. <i>Physical Review Letters</i> , 2012 , 108, 015504 Relation between (Felaxation and fragility in LaCe-based metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 869-871 Regenerator performance below 4 K in Tm-based bulk metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 1716-1719 Correlation between (Felaxation and self-diffusion of the smallest constituting atoms in metallic	5.6 7.4 3.9	122204407
9 8 7 6	The activation energy and volume of flow units of metallic glasses. <i>Scripta Materialia</i> , 2012 , 67, 9-12 Tensile plasticity in metallic glasses with pronounced Felaxations. <i>Physical Review Letters</i> , 2012 , 108, 015504 Relation between Felaxation and fragility in LaCe-based metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 869-871 Regenerator performance below 4 K in Tm-based bulk metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 1716-1719 Correlation between Felaxation and self-diffusion of the smallest constituting atoms in metallic glasses. <i>Physical Review Letters</i> , 2012 , 109, 095508 Relating activation of shear transformation zones to Felaxations in metallic glasses. <i>Physical</i>	5.6 7.4 3.9 3.9 7.4	122 204 40 7

Enhancement of Strength and Corrosion Resistance of Copper Wires by Metallic Glass Coating.

Materials Transactions, 2009, 50, 2451-2454

1.3 10