Michelina Plateroti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7489514/publications.pdf

Version: 2024-02-01

840776 1058476 14 873 11 14 citations h-index g-index papers 14 14 14 735 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Murine intestinal stem cells are highly sensitive to modulation of the T3/TR $\hat{i}\pm 1$ -dependent pathway. Development (Cambridge), 2021, 148, .	2.5	10
2	Thyroid Hormone Nuclear Receptor $TR\hat{l}\pm 1$ and Canonical WNT Pathway Cross-Regulation in Normal Intestine and Cancer. Frontiers in Endocrinology, 2021, 12, 725708.	3.5	2
3	Increased expression of the thyroid hormone nuclear receptor $TR\hat{l}\pm 1$ characterizes intestinal tumors with high Wnt activity. Oncotarget, 2018, 9, 30979-30996.	1.8	12
4	The thyroid hormone nuclear receptors and the Wnt/ \hat{l}^2 -catenin pathway: An intriguing liaison. Developmental Biology, 2017, 422, 71-82.	2.0	39
5	Thyroid hormone regulation of intestinal epithelial stem cell biology. Molecular and Cellular Endocrinology, 2017, 459, 90-97.	3.2	27
6	The thyroid hormone nuclear receptor $TR\hat{l}\pm 1$ controls the Notch signaling pathway and cell fate in murine intestine. Development (Cambridge), 2015, 142, 2764-2774.	2.5	35
7	Thyroid hormones and their nuclear receptors: new players in intestinal epithelium stem cell biology?. Cellular and Molecular Life Sciences, 2014, 71, 2897-2907.	5.4	20
8	The thyroid hormones and their nuclear receptors in the gut: From developmental biology to cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 938-946.	3.8	76
9	Thyroid Hormones and Their Receptors: From Development to Disease. Journal of Thyroid Research, 2011, 2011, 1-2.	1.3	4
10	Cooperation Between the Thyroid Hormone Receptor $TR\hat{i}\pm 1$ and the WNT Pathway in the Induction of Intestinal Tumorigenesis. Gastroenterology, 2010, 138, 1863-1874.e1.	1.3	68
11	The Frizzled-related sFRP2 Gene Is a Target of Thyroid Hormone Receptor $\hat{l}\pm 1$ and Activates \hat{l}^2 -Catenin Signaling in Mouse Intestine. Journal of Biological Chemistry, 2009, 284, 1234-1241.	3.4	101
12	Thyroid Hormone Receptor $\hat{l}\pm 1$ Directly Controls Transcription of the \hat{l}^2 -Catenin Gene in Intestinal Epithelial Cells. Molecular and Cellular Biology, 2006, 26, 3204-3214.	2.3	113
13	Genetic Analysis Reveals Different Functions for the Products of the Thyroid Hormone Receptor α Locus. Molecular and Cellular Biology, 2001, 21, 4748-4760.	2.3	239
14	Functional Interference between Thyroid Hormone Receptor α (TRα) and Natural Truncated TRΔα Isoforms in the Control of Intestine Development. Molecular and Cellular Biology, 2001, 21, 4761-4772.	2.3	127