
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7489437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oncosuppressor-Mutated Cell-Based Diagnostic Platform for Liquid Biopsy Diagnoses Benign Head and Neck Masses and Predicts Malignancy in Thyroid Nodules: Results from a Consecutive Cohort of Patients. European Thyroid Journal, 2021, 10, 285-294.	1.2	2
2	CD9, a tetraspanin target for cancer therapy?. Experimental Biology and Medicine, 2021, 246, 1121-1138.	1.1	30
3	Commentary: Could We Address the Interplay Between CD133, Wnt/β-Catenin, and TERT Signaling Pathways as a Potential Target for Glioblastoma Therapy?. Frontiers in Oncology, 2021, 11, 712358.	1.3	3
4	Itraconazole inhibits nuclear delivery of extracellular vesicle cargo by disrupting the entry of late endosomes into the nucleoplasmic reticulum. Journal of Extracellular Vesicles, 2021, 10, e12132.	5.5	11
5	Exosomes, microvesicles, and their friends in solid tumors. , 2020, , 39-80.		3
6	Uptake and Fate of Extracellular Membrane Vesicles: Nucleoplasmic Reticulum-Associated Late Endosomes as a New Gate to Intercellular Communication. Cells, 2020, 9, 1931.	1.8	38
7	Extracellular Vesicles as Biological Shuttles for Targeted Therapies. International Journal of Molecular Sciences, 2019, 20, 1848.	1.8	60
8	Extracellular Vesicles from Thyroid Carcinoma: The New Frontier of Liquid Biopsy. International Journal of Molecular Sciences, 2019, 20, 1114.	1.8	33
9	Antiâ€human <scp>CD</scp> 9 antibody Fab fragment impairs the internalization of extracellular vesicles and the nuclear transfer of their cargo proteins. Journal of Cellular and Molecular Medicine, 2019, 23, 4408-4421.	1.6	22
10	Clinical Significance of Extracellular Vesicles in Plasma from Glioblastoma Patients. Clinical Cancer Research, 2019, 25, 266-276.	3.2	177
11	Prominin-1/CD133: Lipid Raft Association, Detergent Resistance, and Immunodetection. Stem Cells Translational Medicine, 2018, 7, 155-160.	1.6	16
12	VAMP-associated protein-A and oxysterol-binding protein–related protein 3 promote the entry of late endosomes into the nucleoplasmic reticulum. Journal of Biological Chemistry, 2018, 293, 13834-13848.	1.6	55
13	The HDAC6 Inhibitor Tubacin Induces Release of CD133 ⁺ Extracellular Vesicles From Cancer Cells. Journal of Cellular Biochemistry, 2017, 118, 4414-4424.	1.2	26
14	Observation-driven inquiry: Raman spectroscopic imaging illuminates cancer lipid metabolism. Stem Cell Investigation, 2017, 4, 42-42.	1.3	0
15	Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes. Oncotarget, 2017, 8, 14443-14461.	0.8	48
16	Cancer relevance of signal recognition particle RNA and other non-coding RNAs in extracellular vesicles. Translational Cancer Research, 2017, 6, S1257-S1260.	0.4	2
17	Analogies Between Cancer-Derived Extracellular Vesicles and Enveloped Viruses with an Emphasis on Human Breast Cancer. Current Pathobiology Reports, 2016, 4, 169-179.	1.6	1
18	Transmission of Information in Neoplasia by Extracellular Vesicles. BioMed Research International, 2015, 2015, 1-2.	0.9	4

#	Article	IF	CITATIONS
19	Breast Cancer-Derived Extracellular Vesicles: Characterization and Contribution to the Metastatic Phenotype. BioMed Research International, 2015, 2015, 1-13.	0.9	65
20	Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget, 2015, 6, 7970-7991.	0.8	45
21	Ethanol induces upregulation of the nerve growth factor receptor CD271 in human melanoma cells via nuclear factor-l ^e B activation. Oncology Letters, 2015, 10, 815-821.	0.8	5
22	Letter to the Editor <scp>:</scp> An Intriguing Relationship Between Lipid Droplets, Cholesterol-Binding Protein CD133 and Wnt/l²-Catenin Signaling Pathway in Carcinogenesis. Stem Cells, 2015, 33, 1366-1370.	1.4	22
23	Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget, 2015, 6, 31413-31427.	0.8	87
24	Adhesion signaling promotes protease-driven polyploidization of glioblastoma cells. International Journal of Molecular Medicine, 2014, 34, 1365-1371.	1.8	1
25	The Nuclear Pool of Tetraspanin CD9 Contributes to Mitotic Processes in Human Breast Carcinoma. Molecular Cancer Research, 2014, 12, 1840-1850.	1.5	16
26	Biochemical and biological characterization of exosomes containing prominin-1/CD133. Molecular Cancer, 2013, 12, 62.	7.9	93
27	Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells. Experimental Cell Research, 2013, 319, 810-819.	1.2	48
28	Prominin-1 (CD133) and Metastatic Melanoma: Current Knowledge and Therapeutic Perspectives. Advances in Experimental Medicine and Biology, 2013, 777, 197-211.	0.8	8
29	Spontaneous Formation of Tumorigenic Hybrids between Breast Cancer and Multipotent Stromal Cells Is a Source of Tumor Heterogeneity. American Journal of Pathology, 2012, 180, 2504-2515.	1.9	86
30	Relationship between Tumor Cell Invasiveness and Polyploidization. PLoS ONE, 2012, 7, e53364.	1.1	6
31	The intrinsic fusogenicity of glioma cells as a factor of transformation and progression in the tumor microenvironment. International Journal of Cancer, 2012, 131, 334-343.	2.3	17
32	Cancer Stem Cells. Journal of Oncology, 2011, 2011, 1-1.	0.6	4
33	Phenotypic Heterogeneity of Breast Cancer Stem Cells. Journal of Oncology, 2011, 2011, 1-6.	0.6	75
34	Imatinib mesylate enhances the malignant behavior of human breast carcinoma cells. Cancer Chemotherapy and Pharmacology, 2011, 67, 919-926.	1.1	11
35	Primary geneâ€engineered neural stem/progenitor cells demonstrate tumorâ€selective migration and antitumor effects in glioma. International Journal of Cancer, 2010, 126, 1206-1215.	2.3	30
36	Phenotypic characterization of mammosphere-forming cells from the human MA-11 breast carcinoma cell line. Experimental Cell Research, 2010, 316, 1576-1586.	1.2	30

#	Article	IF	CITATIONS
37	The Stem Cell-Associated Antigen CD133 (Prominin-1) Is a Molecular Therapeutic Target for Metastatic Melanoma. Stem Cells, 2008, 26, 3008-3017.	1.4	207
38	Primary neural stem/progenitor cells expressing endostatin or cytochrome P450 for gene therapy of glioblastoma. Cancer Gene Therapy, 2008, 15, 605-615.	2.2	28
39	Growth of cancer cell lines under stem cell-like conditions has the potential to unveil therapeutic targets. Experimental Cell Research, 2008, 314, 2110-2122.	1.2	66
40	Gamma-glutamylcysteine synthetase-based selection strategy for gene therapy of chronic granulomatous disease and graft-vshost disease. European Journal of Haematology, 2007, 78, 440-448.	1.1	9
41	γ-Clutamylcysteine Synthetase and L-Buthionine-(S,R)-Sulfoximine: A New Selection Strategy for Gene-Transduced Neural and Hematopoietic Stem/Progenitor Cells. Human Gene Therapy, 2005, 16, 711-724.	1.4	8
42	Efficient expansion and gene transduction of mouse neural stem/progenitor cells on recombinant fibronectin. Neuroscience, 2004, 124, 823-830.	1.1	36
43	Apparent lack of Mrp1-mediated efflux at the luminal side of mouse blood-brain barrier endothelial cells. Pharmaceutical Research, 2003, 20, 904-909.	1.7	61
44	Role of the Multidrug Resistance Protein 1 in Protection from Heavy Metal Oxyanions: Investigations in Vitro and in MRP1-Deficient Mice. Biochemical and Biophysical Research Communications, 2002, 291, 617-622.	1.0	40
45	Role of the multidrug resistance protein 1 gene in the carcinogenicity of aflatoxin B1: investigations using mrp1-null mice. Toxicology, 2002, 171, 201-205.	2.0	28
46	Erythrocyte Membrane ATP Binding Cassette (ABC) Proteins: MRP1 and CFTR as Well as CD39 (Ecto-apyrase) Involved in RBC ATP Transport and Elevated Blood Plasma ATP of Cystic Fibrosis. Blood Cells, Molecules, and Diseases, 2001, 27, 165-180.	0.6	54
47	Novel Bicistronic Retroviral Vector Expressingγ-Glutamylcysteine Synthetase and the Multidrug Resistance Protein 1 (MRP1) Protects Cells from MRP1-Effluxed Drugs and Alkylating Agents. Human Gene Therapy, 2001, 12, 1785-1796.	1.4	21
48	Discussion. Biochemical Pharmacology, 1999, 58, 557-562.	2.0	51
49	Overexpression of the multidrug resistance genes mdr1, mdr3, and mrp in L1210 leukemia cells resistant to inhibitors of ribonucleotide reductase. Biochemical Pharmacology, 1997, 54, 649-655.	2.0	33
50	Structure-function relationships for a new series of pyridine-2-carboxaldehyde thiosemicarbazones on ribonucleotide reductase activity and tumor cell growth in culture and in vivo. Advances in Enzyme Regulation, 1995, 35, 55-68.	2.9	30
51	Inhibitors of ribonucleotide reductase. Biochemical Pharmacology, 1994, 48, 335-344.	2.0	106
52	Biochemical characterisation of elsamicin and other coumarin-related antitumour agents as potent inhibitors of human topoisomerase II. European Journal of Cancer, 1993, 29, 1985-1991.	1.3	56
53	Potentiation of etoposide cytotoxicity against a human ovarian cancer cell line by pretreatment with non-toxic concentrations of methotrexate or aphidicolin. European Journal of Cancer, 1992, 28, 66-71.	1.3	22
54	Potentiation by novobiocin of the cytotoxic activity of etoposide (VP-16) and teniposide (VM-26). International Journal of Cancer, 1992, 51, 780-787.	2.3	20

#	Article	IF	CITATIONS
55	Increase in topoisomerase-II-mediated dna breaks and cytotoxicity of VP16 in human U937 lymphoma cells pretreated with low doses of methotrexate. International Journal of Cancer, 1990, 45, 156-162.	2.3	23
56	Early DNA damage induced in cells exposed to N10-propargyl 5,8-dideazafolic acid (CB 3717) or methotrexate. Biochemical Pharmacology, 1988, 37, 1875-1876.	2.0	3
57	Increase in etoposide-induced topoisomerase II-mediated DNA breaks after cell synchronization induced by low doses of methotrexate. Biochemical Pharmacology, 1988, 37, 1883-1884.	2.0	9
58	Gentisic acid: an aspirin metabolite with multiple effects on human blood polymorphonuclear leukocytes. Biochemical Pharmacology, 1986, 35, 2443-2445.	2.0	22
59	Mitozolomide activity on human cancer cells in vitro. British Journal of Cancer, 1986, 54, 925-932.	2.9	12
60	Vitamin E and vitamin C inhibit arachidonate-induced aggregation of human peripheral blood leukocytesin vitro. Agents and Actions, 1986, 19, 127-131.	0.7	14