Chul-Hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7488600/publications.pdf Version: 2024-02-01

		516710	580821
26	1,414	16	25
papers	citations	h-index	g-index
32	32	32	1832
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	H1 histones control the epigenetic landscape by local chromatin compaction. Nature, 2021, 589, 293-298.	27.8	101
2	Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nature Communications, 2021, 12, 714.	12.8	54
3	Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma. Genes and Development, 2019, 33, 1428-1440.	5.9	75
4	LEDGF and HDGF2 relieve the nucleosome-induced barrier to transcription in differentiated cells. Science Advances, 2019, 5, eaay3068.	10.3	61
5	PRC2 is high maintenance. Genes and Development, 2019, 33, 903-935.	5.9	197
6	Distinct Stimulatory Mechanisms Regulate the Catalytic Activity of Polycomb Repressive Complex 2. Molecular Cell, 2018, 70, 435-448.e5.	9.7	90
7	Allosteric Activation Dictates PRC2 Activity Independent of Its Recruitment to Chromatin. Molecular Cell, 2018, 70, 422-434.e6.	9.7	100
8	Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Science Advances, 2018, 4, eaau5935.	10.3	126
9	Capturing the Onset of PRC2-Mediated Repressive Domain Formation. Molecular Cell, 2018, 70, 1149-1162.e5.	9.7	222
10	GSK-3β Homolog Rim11 and the Histone Deacetylase Complex Ume6-Sin3-Rpd3 Are Involved in Replication Stress Response Caused by Defects in Dna2. Genetics, 2017, 206, 829-842.	2.9	4
11	Physical and functional interactions between nucleosomes and Rad27, a critical component of <scp>DNA</scp> processing during <scp>DNA</scp> metabolism. FEBS Journal, 2016, 283, 4247-4262.	4.7	3
12	Homodimeric PHD Domain-containing Rco1 Subunit Constitutes a Critical Interaction Hub within the Rpd3S Histone Deacetylase Complex. Journal of Biological Chemistry, 2016, 291, 5428-5438.	3.4	20
13	Nucleosome Contact Triggers Conformational Changes of Rpd3S Driving High-Affinity H3K36me Nucleosome Engagement. Cell Reports, 2015, 10, 204-215.	6.4	46
14	Rad52/Rad59-dependent Recombination as a Means to Rectify Faulty Okazaki Fragment Processing. Journal of Biological Chemistry, 2014, 289, 15064-15079.	3.4	18
15	Chromatin Remodelers Fine-Tune H3K36me-Directed Deacetylation of Neighbor Nucleosomes by Rpd3S. Molecular Cell, 2013, 52, 255-263.	9.7	52
16	The N-terminal 45-kDa Domain of Dna2 Endonuclease/Helicase Targets the Enzyme to Secondary Structure DNA. Journal of Biological Chemistry, 2013, 288, 9468-9481.	3.4	14
17	Biochemical studies of the Saccharomyces cerevisiae Mph1 helicase on junction-containing DNA structures. Nucleic Acids Research, 2012, 40, 2089-2106.	14.5	7
18	The Trans-autostimulatory Activity of Rad27 Suppresses dna2 Defects in Okazaki Fragment Processing. Journal of Biological Chemistry, 2012, 287, 8675-8687.	3.4	8

CHUL-HWAN LEE

#	Article	IF	CITATIONS
19	Multivalent di-nucleosome recognition enables the Rpd3S histone deacetylase complex to tolerate decreased H3K36 methylation levels. EMBO Journal, 2012, 31, 3564-3574.	7.8	49
20	Analysis of subunit assembly and function of the <i>Saccharomyces cerevisiae</i> RNase H2 complex. FEBS Journal, 2011, 278, 4927-4942.	4.7	6
21	Involvement of Vts1, a structure-specific RNA-binding protein, in Okazaki fragment processing in yeast. Nucleic Acids Research, 2010, 38, 1583-1595.	14.5	10
22	Genetic and functional interactions between Mus81-Mms4 and Rad27. Nucleic Acids Research, 2010, 38, 7611-7625.	14.5	23
23	Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 71-96.	5.2	71
24	Human Replication Factor C Stimulates Flap Endonuclease 1. Journal of Biological Chemistry, 2009, 284, 10387-10399.	3.4	15
25	The MPH1 Gene of Saccharomyces cerevisiae Functions in Okazaki Fragment Processing. Journal of Biological Chemistry, 2009, 284, 10376-10386.	3.4	25
26	Lagging Strand Synthesis and Genomic Stability. , 0, , .		0