
Sylviane Pied

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7488195/publications.pdf Version: 2024-02-01

SVIVIANE DIED

#	Article	IF	CITATIONS
1	A noncanonical autophagy is involved in the transfer of <i>Plasmodium</i> -microvesicles to astrocytes. Autophagy, 2022, 18, 1583-1598.	9.1	6
2	Autophagy Pathways in the Genesis of Plasmodium-Derived Microvesicles: A Double-Edged Sword?. Life, 2022, 12, 415.	2.4	2
3	Expression of CD300lf by microglia contributes to resistance to cerebral malaria by impeding the neuroinflammation. Genes and Immunity, 2020, 21, 45-62.	4.1	12
4	<i>Plasmodium yoelii</i> Uses a TLR3-Dependent Pathway to Achieve Mammalian Host Parasitism. Journal of Immunology, 2020, 205, 3071-3082.	0.8	2
5	Vivax infection alters peripheral Bâ€cell profile and induces persistent serum IgM. Parasite Immunology, 2018, 40, e12580.	1.5	16
6	Uptake of parasiteâ€derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. Glia, 2017, 65, 75-92.	4.9	44
7	Heterozygous mutants of TIRAP (S180L) polymorphism protect adult patients with Plasmodium falciparum infection against severe disease and mortality. Infection, Genetics and Evolution, 2016, 43, 146-150.	2.3	8
8	Heme dampens T-cell sequestration by modulating glial cell responses during rodent cerebral malaria. Brain, Behavior, and Immunity, 2016, 58, 280-290.	4.1	11
9	Host metabolic responses to Plasmodium falciparum infections evaluated by ¹ H NMR metabolomics. Molecular BioSystems, 2016, 12, 3324-3332.	2.9	27
10	Suppression of CD4 ⁺ Effector Responses by Naturally Occurring CD4 ⁺ CD25 ⁺ Foxp3 ⁺ Regulatory T Cells Contributes to Experimental Cerebral Malaria. Infection and Immunity, 2016, 84, 329-338.	2.2	2
11	A TCRβ Repertoire Signature Can Predict Experimental Cerebral Malaria. PLoS ONE, 2016, 11, e0147871.	2.5	24
12	Erythropoietin Levels Increase during Cerebral Malaria and Correlate with Heme, Interleukin-10 and Tumor Necrosis Factor-Alpha in India. PLoS ONE, 2016, 11, e0158420.	2.5	6
13	Evidence of IL-17, IP-10, and IL-10 involvement in multiple-organ dysfunction and IL-17 pathway in acute renal failure associated to Plasmodium falciparum malaria. Journal of Translational Medicine, 2015, 13, 369.	4.4	27
14	Asymptomatic Plasmodium falciparum infection in children is associated with increased auto-antibody production, high IL-10 plasma levels and antibodies to merozoite surface protein 3. Malaria Journal, 2015, 14, 162.	2.3	23
15	Multifaceted Role of Heme during Severe Plasmodium falciparum Infections in India. Infection and Immunity, 2015, 83, 3793-3799.	2.2	21
16	<i>Plasmodium</i> Riboprotein PfPO Induces a Deviant Humoral Immune Response in Balb/ <i>c</i> Mice. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-11.	3.0	2
17	High Levels of Immunoglobulin E Autoantibody to 14-3-3 Â Protein Correlate With Protection Against Severe Plasmodium falciparum Malaria. Journal of Infectious Diseases, 2012, 206, 1781-1789.	4.0	21
18	Accumulation of <i>Plasmodium berghei</i> -Infected Red Blood Cells in the Brain Is Crucial for the Development of Cerebral Malaria in Mice. Infection and Immunity, 2010, 78, 4033-4039.	2.2	145

Sylviane Pied

#	Article	IF	CITATIONS
19	lgG Autoantibody to Brain Beta Tubulin III Associated with Cytokine Cluster-II Discriminate Cerebral Malaria in Central India. PLoS ONE, 2009, 4, e8245.	2.5	25
20	An early burst of IFN-Î ³ induced by the pre-erythrocytic stage favours Plasmodium yoelii parasitaemia in B6 mice. Malaria Journal, 2009, 8, 128.	2.3	7
21	Primary Infection of C57BL/6 Mice with <i>Plasmodium yoelii</i> Induces a Heterogeneous Response of NKT Cells. Infection and Immunity, 2007, 75, 2511-2522.	2.2	35
22	Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status. Malaria Journal, 2007, 6, 1.	2.3	120
23	Self-Reactivities to the Non-Erythroid Alpha Spectrin Correlate with Cerebral Malaria in Gabonese Children. PLoS ONE, 2007, 2, e389.	2.5	22
24	Regulatory CD4+CD25+ Foxp3+ T cells expand during experimental Plasmodium infection but do not prevent cerebral malaria. International Journal for Parasitology, 2007, 37, 963-973.	3.1	74
25	Clusters of Cytokines Determine Malaria Severity inPlasmodium falciparum–Infected Patients from Endemic Areas of Central India. Journal of Infectious Diseases, 2006, 194, 198-207.	4.0	141
26	NK Cell Responses to <i>Plasmodium</i> Infection and Control of Intrahepatic Parasite Development. Journal of Immunology, 2006, 177, 1229-1239.	0.8	55
27	Genetic control of parasite clearance leads to resistance to Plasmodium berghei ANKA infection and confers immunity. Genes and Immunity, 2005, 6, 416-421.	4.1	23
28	Comparative Study of Brain CD8 + T Cells Induced by Sporozoites and Those Induced by Blood-Stage Plasmodium berghei ANKA Involved in the Development of Cerebral Malaria. Infection and Immunity, 2004, 72, 2817-2826.	2.2	43
29	A Profound Alteration of Blood TCRB Repertoire Allows Prediction of Cerebral Malaria. Journal of Immunology, 2004, 173, 4568-4575.	0.8	30
30	New methods and software tools for high throughput CDR3 spectratyping. Application to T lymphocyte repertoire modifications during experimental malaria. Journal of Immunological Methods, 2003, 278, 105-116.	1.4	23
31	Deletion of T Cells Bearing the Vβ8.1 T-Cell Receptor following Mouse Mammary Tumor Virus 7 Integration Confers Resistance to Murine Cerebral Malaria. Infection and Immunity, 2002, 70, 3701-3706.	2.2	12
32	Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9919-9923.	7.1	54
33	Susceptibility to Experimental Cerebral Malaria Induced by Plasmodium berghei ANKA in Inbred Mouse Strains Recently Derived from Wild Stock. Infection and Immunity, 2002, 70, 2049-2056.	2.2	42
34	Liver CD4â^'CD8â^' NK1.1+ TCRαβ Intermediate Cells Increase During Experimental Malaria Infection and Are Able to Exhibit Inhibitory Activity Against the Parasite Liver Stage In Vitro. Journal of Immunology, 2000, 164, 1463-1469.	0.8	87
35	T cell response in malaria pathogenesis: selective increase in T cells carrying the TCR Vβ8 during experimental cerebral malaria. International Immunology, 1999, 11, 1553-1562.	4.0	61
36	Cloned Lines of <i>Plasmodium berghei</i> ANKA Differ in Their Abilities To Induce Experimental Cerebral Malaria. Infection and Immunity, 1998, 66, 4093-4099.	2.2	68

Sylviane Pied

#	Article	IF	CITATIONS
37	Cloned Lines of Plasmodium berghei ANKA Differ in Their Abilities To Induce Experimental Cerebral Malaria. Infection and Immunity, 1998, 66, 4093-4099.	2.2	16
38	Evidence for superantigenic activity during murine malaria infection. International Immunology, 1997, 9, 17-25.	4.0	16
39	Non specific resistance against malaria pre-erythrocytic stages: involvement of acute phase proteins. Parasite, 1995, 2, 263-268.	2.0	15
40	TNF and Other Cytokines in Malaria: Dual Role in Pathology and Protection. , 1992, , 197-214.		1
41	Inflammatory status and preerythrocytic stages of malaria: Role of the C-reactive protein. Experimental Parasitology, 1991, 72, 1-7.	1.2	31
42	Inhibitory activity of IL-6 on malaria hepatic stages. Parasite Immunology, 1991, 13, 211-217.	1.5	54
43	In vitro activity of CD4+ and CD8+ T lymphocytes from mice immunized with a synthetic malaria peptide Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7963-7967.	7.1	95
44	L-Arginine-dependent destruction of intrahepatic malaria parasites in response to tumor necrosis factor and/or interleukin 6 stimulation. European Journal of Immunology, 1991, 21, 227-230.	2.9	199
45	TNF inhibits malaria hepatic stages in vitro via synthesis of IL-6. International Immunology, 1991, 3, 317-321.	4.0	54
46	A malaria heat-shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell-mediated cytotoxic mechanisms by nonparenchymal liver cells. European Journal of Immunology, 1990, 20, 1445-1449.	2.9	117
47	Hepatic phase of malaria is the target of cellular mechanisms induced by the previous and the subsequent stages. A crucial role for liver nonparenchymal cells. Immunology Letters, 1990, 25, 65-70.	2.5	35
48	Pre-erythrocytic stages of plasmodia. Role of specific and nonspecific factors. Biology of the Cell, 1988, 64, 165-172.	2.0	16