Michael Köpke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7488194/publications.pdf Version: 2024-02-01

MICHAEL KÃODE

#	Article	IF	CITATIONS
1	Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum. Scientific Reports, 2022, 12, 411.	3.3	8
2	Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metabolic Engineering, 2022, 71, 117-141.	7.0	41
3	Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 2022, 40, 335-344.	17.5	195
4	Reverse \hat{l}^2 -oxidation pathways for efficient chemical production. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	3.0	14
5	Spacer2PAM: A computational framework to guide experimental determination of functional CRISPR-Cas system PAM sequences. Nucleic Acids Research, 2022, 50, 3523-3534.	14.5	8
6	Required Gene Set for Autotrophic Growth of <i>Clostridium autoethanogenum</i> . Applied and Environmental Microbiology, 2022, 88, e0247921.	3.1	9
7	Absolute Proteome Quantification in the Gas-Fermenting Acetogen <i>Clostridium autoethanogenum</i> . MSystems, 2022, 7, e0002622.	3.8	10
8	Faster Growth Enhances Low Carbon Fuel and Chemical Production Through Gas Fermentation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 879578.	4.1	11
9	Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria. Nature Communications, 2022, 13, .	12.8	27
10	Transcriptional control of <i>Clostridium autoethanogenum</i> using CRISPRi. Synthetic Biology, 2021, 6, ysab008.	2.2	16
11	Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 439-470.	6.8	69
12	Redox controls metabolic robustness in the gas-fermenting acetogen <i>Clostridium autoethanogenum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13168-13175.	7.1	54
13	Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metabolic Engineering, 2020, 62, 95-105.	7.0	27
14	In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nature Chemical Biology, 2020, 16, 912-919.	8.0	142
15	Enhancing CO2-Valorization Using Clostridium autoethanogenum for Sustainable Fuel and Chemicals Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 204.	4.1	79
16	Pollution to products: recycling of â€~above ground' carbon by gas fermentation. Current Opinion in Biotechnology, 2020, 65, 180-189.	6.6	119
17	Modular cell-free expression plasmids to accelerate biological design in cells. Synthetic Biology, 2020, 5, ysaa019.	2.2	10
18	The carbonic anhydrase of Clostridium autoethanogenum represents a new subclass of β-carbonic anhydrases. Applied Microbiology and Biotechnology, 2019, 103, 7275-7286.	3.6	11

MICHAEL KöPKE

#	Article	IF	CITATIONS
19	A novel conjugal donor strain for improved DNA transfer into Clostridium spp Anaerobe, 2019, 59, 184-191.	2.1	32
20	A TetR-Family Protein (CAETHG_0459) Activates Transcription From a New Promoter Motif Associated With Essential Genes for Autotrophic Growth in Acetogens. Frontiers in Microbiology, 2019, 10, 2549.	3.5	12
21	Kinetic ensemble model of gas fermenting Clostridium autoethanogenum for improved ethanol production. Biochemical Engineering Journal, 2019, 148, 46-56.	3.6	27
22	Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum. Applied Microbiology and Biotechnology, 2019, 103, 4633-4648.	3.6	25
23	Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metabolic Engineering, 2019, 53, 14-23.	7.0	57
24	Quantitative analysis of tetrahydrofolate metabolites from clostridium autoethanogenum. Metabolomics, 2018, 14, 35.	3.0	5
25	H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. Biotechnology for Biofuels, 2018, 11, 55.	6.2	103
26	Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metabolic Engineering, 2017, 40, 104-114.	7.0	178
27	Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metabolic Engineering, 2017, 41, 202-211.	7.0	96
28	Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cell Systems, 2017, 4, 505-515.e5.	6.2	128
29	Syngas Biorefinery and Syngas Utilization. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 247-280.	1.1	31
30	Gas Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. Frontiers in Microbiology, 2016, 7, 694.	3.5	343
31	Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnology for Biofuels, 2016, 9, 219.	6.2	96
32	Insights into CO ₂ Fixation Pathway of <i>Clostridium autoethanogenum</i> by Targeted Mutagenesis. MBio, 2016, 7, .	4.1	83
33	Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen. Green Chemistry, 2016, 18, 3020-3028.	9.0	143
34	Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Scientific Data, 2015, 2, 150014.	5.3	40
35	Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation. Advances in Biochemical Engineering/Biotechnology, 2015, 156, 293-321.	1.1	13
36	Energy Conservation Associated with Ethanol Formation from H ₂ and CO ₂ in Clostridium autoethanogenum Involving Electron Bifurcation. Journal of Bacteriology, 2015, 197, 2965-2980.	2.2	198

#	Article	IF	CITATIONS
37	Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase. Applied and Environmental Microbiology, 2014, 80, 3394-3403.	3.1	89
38	Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnology for Biofuels, 2014, 7, 40.	6.2	135
39	NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO. Journal of Bacteriology, 2013, 195, 4373-4386.	2.2	208
40	Clostridium difficile Is an Autotrophic Bacterial Pathogen. PLoS ONE, 2013, 8, e62157.	2.5	70
41	Commercial Biomass Syngas Fermentation. Energies, 2012, 5, 5372-5417.	3.1	352
42	Fermentative production of ethanol from carbon monoxide. Current Opinion in Biotechnology, 2011, 22, 320-325.	6.6	186
43	Biochemical production of biobutanol. , 2011, , 221-257.		11
44	2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas. Applied and Environmental Microbiology, 2011, 77, 5467-5475.	3.1	362
45	<i>Clostridium ljungdahlii</i> represents a microbial production platform based on syngas. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13087-13092.	7.1	594
46	Gas Fermentation for Commercial Biofuels Production. , 0, , .		24