
penghao Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/748790/publications.pdf Version: 2024-02-01

DENCHAO HU

#	Article	IF	CITATIONS
1	Topologicalâ€Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density. Advanced Functional Materials, 2014, 24, 3172-3178.	14.9	371
2	Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment. ACS Nano, 2016, 10, 7279-7286.	14.6	208
3	Largely enhanced energy density in flexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO ₃ fibers. Journal of Materials Chemistry A, 2013, 1, 1688-1693.	10.3	151
4	Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Applied Physics Letters, 2012, 101, .	3.3	139
5	Enhanced electric displacement induces large energy density in polymer nanocomposites containing core–shell structured BaTiO ₃ @TiO ₂ nanofibers. Journal of Materials Chemistry A, 2016, 4, 2314-2320.	10.3	130
6	Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Applied Surface Science, 2018, 458, 743-750.	6.1	126
7	Highly enhanced energy density induced by hetero-interface in sandwich-structured polymer nanocomposites. Journal of Materials Chemistry A, 2013, 1, 12321.	10.3	116
8	High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core–shell structured TiO2@BaTiO3 nanoparticles. Applied Surface Science, 2018, 441, 824-831.	6.1	111
9	Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. Journal of Applied Physics, 2017, 121, .	2.5	98
10	Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al ₂ O ₃ nanoparticles. Journal of Materials Chemistry A, 2020, 8, 24536-24542.	10.3	98
11	Highly improved electro-actuation of dielectric elastomers by molecular grafting of azobenzenes to silicon rubber. Journal of Materials Chemistry C, 2015, 3, 4883-4889.	5.5	82
12	Excellent Stability in Polyetherimide/SiO ₂ Nanocomposites with Ultrahigh Energy Density and Discharge Efficiency at High Temperature. Small, 2022, 18, .	10.0	54
13	Coaxially aligned MWCNTs improve performance of electrospun P(VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator. Composites Part B: Engineering, 2019, 178, 107447.	12.0	49
14	Optimizing the dielectric energy storage performance in P(VDF-HFP) nanocomposite by modulating the diameter of PZT nanofibers prepared via electrospinning. Composites Science and Technology, 2019, 184, 107838.	7.8	37
15	Synergetic Enhancement of Permittivity and Breakdown Strength in Allâ€Polymeric Dielectrics toward Flexible Energy Storage Devices. Advanced Materials Interfaces, 2016, 3, 1600016.	3.7	35
16	High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles. Chemical Engineering Journal, 2021, 420, 127614.	12.7	33
17	Preparation and dielectric properties of polymer composites incorporated with polydopamine@AgNPs core–satellite particles. RSC Advances, 2016, 6, 34529-34533.	3.6	22
18	Linear dependence between content of effective piezo-phase and mechanical-to-electrical conversion in electrospun poly(vinylidene fluoride) fibrous membrane. Materials Letters, 2018, 218, 71-75.	2.6	10

#	Article	IF	CITATIONS
19	Large mechanical-to-electric output originated from optimized configuration in P(VDF-TrFE)-based nanocomposite fibrous membrane as wearable nanogenerator. Composites Science and Technology, 2022, 220, 109266.	7.8	5
20	Bioinspired toughening of soft elastomer via embedded threeâ€dimensional printing. Journal of Applied Polymer Science, 2022, 139, .	2.6	1