Hongjing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7487848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shape- and Size-Controlled Synthesis in Hard Templates: Sophisticated Chemical Reduction for Mesoporous Monocrystalline Platinum Nanoparticles. Journal of the American Chemical Society, 2011, 133, 14526-14529.	13.7	377
2	Nanoarchitectures for Mesoporous Metals. Advanced Materials, 2016, 28, 993-1010.	21.0	357
3	Electrochemical Synthesis of Mesoporous Pt–Au Binary Alloys with Tunable Compositions for Enhancement of Electrochemical Performance. Journal of the American Chemical Society, 2012, 134, 5100-5109.	13.7	245
4	An ultrafine platinum–cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale, 2018, 10, 12302-12307.	5.6	199
5	Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower‣ike Gold Microstructures. ChemSusChem, 2018, 11, 3480-3485.	6.8	176
6	Defectâ€Rich Porous Palladium Metallene for Enhanced Alkaline Oxygen Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 12027-12031.	13.8	173
7	Synthesis of Mesoporous Pt Films with Tunable Pore Sizes from Aqueous Surfactant Solutions. Chemistry of Materials, 2012, 24, 1591-1598.	6.7	164
8	One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale, 2017, 9, 1033-1039.	5.6	163
9	Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 1376-1381.	10.3	163
10	All-Metal Layer-by-Layer Films: Bimetallic Alternate Layers with Accessible Mesopores for Enhanced Electrocatalysis. Journal of the American Chemical Society, 2012, 134, 10819-10821.	13.7	154
11	Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid. Chemistry of Materials, 2010, 22, 2835-2841.	6.7	139
12	One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia. Journal of Materials Chemistry A, 2019, 7, 801-805.	10.3	136
13	Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia. Small, 2019, 15, e1804769.	10.0	132
14	A hierarchical CoTe ₂ –MnTe ₂ hybrid nanowire array enables high activity for oxygen evolution reactions. Chemical Communications, 2018, 54, 10993-10996.	4.1	125
15	Direct fabrication of tri-metallic PtPdCu tripods with branched exteriors for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8662-8668.	10.3	117
16	One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale, 2015, 7, 16860-16866.	5.6	112
17	Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion. Chemical Engineering Journal, 2021, 426, 130759.	12.7	110
18	lr-Doped Ni-based metal–organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. Chemical Communications, 2020, 56, 2151-2154.	4.1	101

#	Article	IF	CITATIONS
19	Metal-organic frameworks-derived Ru-doped Co2P/N-doped carbon composite nanosheet arrays as bifunctional electrocatalysts for hydrogen evolution and urea oxidation. Chemical Engineering Journal, 2021, 408, 127308.	12.7	99
20	Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays. Applied Catalysis B: Environmental, 2021, 298, 120493.	20.2	95
21	Surface Engineering of Defective and Porous Ir Metallene with Polyallylamine for Hydrogen Evolution Electrocatalysis. Advanced Materials, 2022, 34, e2110680.	21.0	95
22	Ambient Nitrogen Reduction to Ammonia Electrocatalyzed by Bimetallic PdRu Porous Nanostructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 2400-2405.	6.7	94
23	One-Step Synthesis of Dendritic Bimetallic PtPd Nanoparticles on Reduced Graphene Oxide and Its Electrocatalytic Properties. Electrochimica Acta, 2016, 188, 845-851.	5.2	88
24	Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2022, 306, 121094.	20.2	86
25	Trimetallic PtPdRu Dendritic Nanocages with Three-Dimensional Electrocatalytic Surfaces. Journal of Physical Chemistry C, 2015, 119, 19947-19953.	3.1	84
26	Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation. Journal of Materials Chemistry A, 2021, 9, 16411-16417.	10.3	82
27	Interface engineering of polyaniline-functionalized porous Pd metallene for alkaline oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 307, 121172.	20.2	82
28	Methanol electroreforming coupled to green hydrogen production over bifunctional Nilr-based metal-organic framework nanosheet arrays. Applied Catalysis B: Environmental, 2022, 300, 120753.	20.2	81
29	Electrocatalytic Nitrogen Reduction to Ammonia by Fe ₂ O ₃ Nanorod Array on Carbon Cloth. ACS Sustainable Chemistry and Engineering, 2019, 7, 11754-11759.	6.7	77
30	Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting. Applied Catalysis B: Environmental, 2022, 310, 121338.	20.2	75
31	Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for CO-poisoning. Nanoscale, 2017, 9, 18881-18889.	5.6	73
32	Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chemical Communications, 2021, 57, 7525-7528.	4.1	73
33	One-step fabrication of tri-metallic PdCuAu nanothorn assemblies as an efficient catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 3642-3648.	10.3	70
34	Fabrication of Mesoporous Cage-Bell Pt Nanoarchitectonics as Efficient Catalyst for Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11768-11774.	6.7	69
35	A platinum oxide decorated amorphous cobalt oxide hydroxide nanosheet array towards alkaline hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 3864-3868.	10.3	67
36	Bimetallic Ag ₃ Cu porous networks for ambient electrolysis of nitrogen to ammonia. Journal of Materials Chemistry A, 2019, 7, 12526-12531.	10.3	67

#	Article	IF	CITATIONS
37	Ultrafine PtO ₂ nanoparticles coupled with a Co(OH)F nanowire array for enhanced hydrogen evolution. Chemical Communications, 2018, 54, 810-813.	4.1	65
38	Direct fabrication of bi-metallic PdRu nanorod assemblies for electrochemical ammonia synthesis. Nanoscale, 2019, 11, 5499-5505.	5.6	65
39	Hydrophilic/Aerophobic Hydrogen-Evolving Electrode: NiRu-Based Metal–Organic Framework Nanosheets In Situ Grown on Conductive Substrates. ACS Applied Materials & Interfaces, 2020, 12, 34728-34735.	8.0	65
40	Synergism of Interfaces and Defects: Cu/Oxygen Vacancy-Rich Cu-Mn ₃ O ₄ Heterostructured Ultrathin Nanosheet Arrays for Selective Nitrate Electroreduction to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 44733-44741.	8.0	64
41	Pt–Ni–P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. Journal of Materials Chemistry A, 2019, 7, 9791-9797.	10.3	63
42	Hydrogen gas-assisted synthesis of worm-like PtMo wavy nanowires as efficient catalysts for the methanol oxidation reaction. Journal of Materials Chemistry A, 2016, 4, 10508-10513.	10.3	61
43	Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chemical Communications, 2019, 55, 14745-14748.	4.1	59
44	One-pot synthesis of PtIr tripods with a dendritic surface as an efficient catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 9107-9112.	10.3	58
45	PtM (M = Co, Ni) Mesoporous Nanotubes as Bifunctional Electrocatalysts for Oxygen Reduction and Methanol Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7960-7968.	6.7	58
46	Trimetallic PtPdNi-Truncated Octahedral Nanocages with a Well-Defined Mesoporous Surface for Enhanced Oxygen Reduction Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 4252-4257.	8.0	57
47	Enhancing electrochemical ammonia synthesis on palladium nanorods through surface hydrogenation. Chemical Engineering Journal, 2021, 416, 129105.	12.7	57
48	In Situ Reconstruction of Partially Hydroxylated Porous Rh Metallene for Ethylene Glycolâ€Assisted Seawater Splitting. Advanced Functional Materials, 2022, 32, .	14.9	57
49	Facile Synthesis of Porous Dendritic Bimetallic Platinum–Nickel Nanocrystals as Efficient Catalysts for the Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2016, 11, 1388-1393.	3.3	50
50	A Threeâ€Dimensionally Structured Electrocatalyst: Cobaltâ€Embedded Nitrogenâ€Doped Carbon Nanotubes/Nitrogenâ€Doped Reduced Graphene Oxide Hybrid for Efficient Oxygen Reduction. Chemistry - A European Journal, 2017, 23, 637-643.	3.3	50
51	Mesoporous Au ₃ Pd Film on Ni Foam: A Self-Supported Electrocatalyst for Efficient Synthesis of Ammonia. ACS Applied Materials & Interfaces, 2020, 12, 436-442.	8.0	49
52	Three-dimensional Pd–Ag–S porous nanosponges for electrocatalytic nitrogen reduction to ammonia. Nanoscale, 2020, 12, 13507-13512.	5.6	49
53	Electrocatalysis of gold-based nanoparticles and nanoclusters. Materials Horizons, 2021, 8, 1657-1682.	12.2	49
54	Direct synthesis of superlong Pt Te mesoporous nanotubes for electrocatalytic oxygen reduction. Journal of Materials Chemistry A, 2019, 7, 1711-1717.	10.3	46

#	Article	IF	CITATIONS
55	In situ coating of a continuous mesoporous bimetallic PtRu film on Ni foam: a nanoarchitectured self-standing all-metal mesoporous electrode. Journal of Materials Chemistry A, 2018, 6, 12744-12750.	10.3	45
56	Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia. Journal of Materials Chemistry A, 2019, 7, 3190-3196.	10.3	45
57	One-step solution-phase synthesis of bimetallic PtCo nanodendrites with high electrocatalytic activity for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2016, 779, 250-255.	3.8	44
58	Engineering bunched RhTe nanochains for efficient methanol oxidation electrocatalysis. Chemical Communications, 2020, 56, 13595-13598.	4.1	43
59	Synthesis of Hollow Platinum–Palladium Nanospheres with a Dendritic Shell as Efficient Electrocatalysts for Methanol Oxidation. Chemistry - an Asian Journal, 2016, 11, 1939-1944.	3.3	42
60	Phosphorus-triggered modification of the electronic structure and surface properties of Pd ₄ S nanowires for robust hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 19873-19878.	10.3	42
61	Cage-bell structured Pt@N-doped hollow carbon sphere for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 409, 128101.	12.7	42
62	Nanoparticle in Nanocage: Au@Porous Pt Yolkâ€Shell Nanoelectrocatalysts. Particle and Particle Systems Characterization, 2015, 32, 863-868.	2.3	38
63	Metal–nonmetal nanoarchitectures: quaternary PtPdNiP mesoporous nanospheres for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 3910-3916.	10.3	38
64	Metal–Nonmetal One-Dimensional Electrocatalyst: AuPdP Nanowires for Ambient Nitrogen Reduction to Ammonia. ACS Sustainable Chemistry and Engineering, 2019, 7, 15772-15777.	6.7	37
65	Ultrafine ruthenium–iridium–tellurium nanotubes for boosting overall water splitting in acidic media. Journal of Materials Chemistry A, 2022, 10, 2021-2026.	10.3	36
66	Synergism of Interface and Electronic Effects: Bifunctional Nâ€Doped Ni ₃ S ₂ /Nâ€Doped MoS ₂ Heteroâ€Nanowires for Efficient Electrocatalytic Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 16074-16080.	3.3	35
67	Boosting Electrocatalytic Activities of Pt-Based Mesoporous Nanoparticles for Overall Water Splitting by a Facile Ni, P Co-Incorporation Strategy. ACS Sustainable Chemistry and Engineering, 2019, 7, 9709-9716.	6.7	35
68	Enhancing hydrogen evolution activity of triangular PtPdCu nanodarts by phosphorus incorporation. Chemical Engineering Journal, 2020, 399, 125810.	12.7	35
69	Methanol-assisted energy-saving hydrogen production over defect-rich perforated PdIn bimetallene. Chemical Engineering Journal, 2022, 435, 134711.	12.7	35
70	A mesoporous Au film with surface sulfur modification for efficient ammonia electrosynthesis. Journal of Materials Chemistry A, 2020, 8, 20414-20419.	10.3	34
71	Polyaniline-coated mesoporous Rh films for nonacidic hydrogen evolution reaction. Chemical Engineering Journal, 2022, 428, 132646.	12.7	34
72	Mesoporous RhTe nanowires towards all-pH-value hydrogen evolution electrocatalysis. Chemical Engineering Journal, 2022, 435, 134798.	12.7	34

#	Article	IF	CITATIONS
73	Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation. Journal of Materials Chemistry A, 2018, 6, 17514-17518.	10.3	33
74	Mesoporous Bimetallic Au@Rh Core–Shell Nanowires as Efficient Electrocatalysts for pH-Universal Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 30479-30485.	8.0	33
75	AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite. Cell Reports Physical Science, 2022, 3, 100869.	5.6	33
76	Prussian Blueâ€Derived Iron Phosphide Nanoparticles in a Porous Graphene Aerogel as Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 679-685.	3.3	32
77	Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution. Nanotechnology, 2018, 29, 225403.	2.6	32
78	Defectâ€Rich Porous Palladium Metallene for Enhanced Alkaline Oxygen Reduction Electrocatalysis. Angewandte Chemie, 2021, 133, 12134-12138.	2.0	32
79	Facile Construction of IrRh Nanosheet Assemblies As Efficient and Robust Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 15747-15754.	6.7	31
80	Trimetallic PtPdCo mesoporous nanopolyhedra with hollow cavities. Nanoscale, 2019, 11, 4781-4787.	5.6	31
81	3D graphene aerogel supported FeNi-P derived from electroactive nickel hexacyanoferrate as efficient oxygen evolution catalyst. Electrochimica Acta, 2018, 292, 107-114.	5.2	30
82	Amorphous Sulfur Decorated Gold Nanowires as Efficient Electrocatalysts toward Ambient Ammonia Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 19969-19974.	6.7	30
83	Transition metal M (M = Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 5595-5600.	10.3	30
84	Synthesis of Oliveâ€Shaped Mesoporous Platinum Nanoparticles (MPNs) with a Hardâ€Templating Method Using Mesoporous Silica (SBAâ€15). Chemistry - an Asian Journal, 2012, 7, 802-808.	3.3	29
85	Pt@Mesoporous PtRu Yolk–Shell Nanostructured Electrocatalyst for Methanol Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 14867-14873.	6.7	29
86	A quaternary metal–metalloid–nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. Journal of Materials Chemistry A, 2020, 8, 2424-2429.	10.3	29
87	Polyethylenimine-modified bimetallic Au@Rh core–shell mesoporous nanospheres surpass Pt for pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 13080-13086.	10.3	29
88	Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction. Nanotechnology, 2018, 29, 175403.	2.6	27
89	Electrochemical Design of Mesoporous Pt–Ru Alloy Films with Various Compositions toward Superior Electrocatalytic Performance. Chemistry - A European Journal, 2012, 18, 13142-13148.	3.3	26
90	One-pot synthesis of bimetallic PdCu nanoframes as an efficient catalyst for the methanol oxidation reaction. New Journal of Chemistry, 2018, 42, 798-801.	2.8	26

#	Article	IF	CITATIONS
91	PtPdRh Mesoporous Nanospheres: An Efficient Catalyst for Methanol Electro-Oxidation. Langmuir, 2019, 35, 413-419.	3.5	26
92	Synthesis of Mesoporous Platinum–Palladium Alloy Films by Electrochemical Plating in Aqueous Surfactant Solutions. Chemistry - an Asian Journal, 2012, 7, 2133-2138.	3.3	25
93	Crystalline core–amorphous shell heterostructures: epitaxial assembly of NiB nanosheets onto PtPd mesoporous hollow nanopolyhedra for enhanced hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 8927-8933.	10.3	25
94	Rational construction of Au ₃ Cu@Cu nanocages with porous core–shell heterostructured walls for enhanced electrocatalytic N ₂ fixation. Journal of Materials Chemistry A, 2021, 9, 8372-8377.	10.3	25
95	Enhanced Dual Fuel Cell Electrocatalysis with Trimetallic PtPdCo Mesoporous Nanoparticles. Chemistry - an Asian Journal, 2018, 13, 2939-2946.	3.3	24
96	Trimetallic Au@PtPd Mesoporous Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 4891-4898.	5.1	24
97	One-step synthesis of self-standing porous palladium-ruthenium nanosheet array on Ni foam for ambient electrosynthesis of ammonia. International Journal of Hydrogen Energy, 2020, 45, 5997-6005.	7.1	24
98	Construction of hierarchical IrTe nanotubes with assembled nanosheets for overall water splitting electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 18576-18581.	10.3	24
99	Two-Dimensional Heterojunction Electrocatalyst: Au-Bi ₂ Te ₃ Nanosheets for Electrochemical Ammonia Synthesis. ACS Applied Materials & Interfaces, 2021, 13, 47458-47464.	8.0	24
100	Phosphorus incorporation accelerates ammonia electrosynthesis over a mesoporous Au film. Chemical Communications, 2022, 58, 6088-6091.	4.1	24
101	Transition metal and phosphorus co-doping induced lattice strain in mesoporous Rh-based nanospheres for pH-universal hydrogen evolution electrocatalysis. Chemical Engineering Journal, 2021, 426, 131227.	12.7	23
102	Boronâ€Intercalationâ€Induced Phase Evolution of Rh Metallene for Energyâ€5aving H ₂ Production by H ₂ O ₂ Oxidation Coupled with Water Electrolysis. Small, 2022, 18, .	10.0	23
103	Tri-metallic PtPdAu mesoporous nanoelectrocatalysts. Nanotechnology, 2018, 29, 255404.	2.6	22
104	One-step fabrication of bimetallic PtNi mesoporous nanospheres as an efficient catalyst for the oxygen reduction reaction. Nanoscale, 2018, 10, 16087-16093.	5.6	22
105	Shape-controlled synthesis of porous AuPt nanoparticles and their superior electrocatalytic activity for oxygen reduction reaction. Science and Technology of Advanced Materials, 2016, 17, 58-62.	6.1	21
106	B-Doped PdRu nanopillar assemblies for enhanced formic acid oxidation electrocatalysis. Nanoscale, 2020, 12, 19159-19164.	5.6	21
107	Binary nonmetal S and P-co-doping into mesoporous PtPd nanocages boosts oxygen reduction electrocatalysis. Nanoscale, 2020, 12, 14863-14869.	5.6	21
108	Flexible synthesis of Au@Pd core–shell mesoporous nanoflowers for efficient methanol oxidation. Nanoscale, 2021, 13, 3208-3213.	5.6	21

#	Article	IF	CITATIONS
109	Anodic hydrazine oxidation assisted hydrogen evolution over bimetallic RhIr mesoporous nanospheres. Journal of Materials Chemistry A, 2021, 9, 18323-18328.	10.3	21
110	Amorphization activated RhPb nanflowers for energy-saving hydrogen production by hydrazine-assisted water electrolysis. Chemical Engineering Journal, 2022, 440, 135848.	12.7	21
111	Smart design of hollow AuPt nanospheres with a porous shell as superior electrocatalysts for ethylene glycol oxidation. RSC Advances, 2016, 6, 19632-19637.	3.6	20
112	Integrated Mesoporous PtPd Film/Ni Foam: An Efficient Binder-Free Cathode for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 12367-12374.	6.7	20
113	Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance. Chemical Engineering Journal, 2021, 421, 127751.	12.7	20
114	Phosphorus-modified ruthenium–tellurium dendritic nanotubes outperform platinum for alkaline hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 5026-5032.	10.3	20
115	Facile preparation of Pt-based cage-bell structured nanoarchitectures for enhanced methanol oxidation electrocatalysis. International Journal of Hydrogen Energy, 2020, 45, 2478-2485.	7.1	19
116	Mesoporous Rh nanotubes for efficient electro-oxidation of methanol. Journal of Materials Chemistry A, 2021, 9, 4744-4750.	10.3	19
117	Enhanced electrocatalytic performance of mesoporous Au-Rh bimetallic films for ammonia synthesis. Chemical Engineering Journal, 2021, 418, 129493.	12.7	19
118	N-doping induced lattice-strained porous PdIr bimetallene for pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 8364-8370.	10.3	19
119	Trimetallic Au@PdPt porous core-shell structured nanowires for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 428, 131070.	12.7	17
120	Liquid Metal Interfacial Growth and Exfoliation to Form Mesoporous Metallic Nanosheets for Alkaline Methanol Electroreforming. ACS Nano, 2022, 16, 2978-2987.	14.6	17
121	Ultralong Ternary PtRuTe Mesoporous Nanotubes Fabricated by Micelle Assembly with a Selfâ€Sacrificial Template. Chemistry - A European Journal, 2019, 25, 5316-5321.	3.3	16
122	Mesoporous AgPdPt Nanotubes as Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2019, 2, 1876-1882.	5.0	16
123	Effects of AuCuB Catalysts with Porous Nanostructures on Electrosynthesis of Ammonia. ACS Sustainable Chemistry and Engineering, 2020, 8, 12588-12594.	6.7	16
124	Twoâ€Dimensional Nilr@Nâ€Doped Carbon Nanocomposites Supported on Ni Foam for Electrocatalytic Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 14496-14501.	3.3	16
125	Engineering One-Dimensional AuPd Nanospikes for Efficient Electrocatalytic Nitrogen Fixation. ACS Applied Materials & Interfaces, 2021, 13, 20233-20239.	8.0	16
126	Defect-rich ultrathin AuPd nanowires with Boerdijk–Coxeter structure for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 435, 134823.	12.7	16

#	Article	IF	CITATIONS
127	Electroreduction of Nitrate to Ammonia on Palladium–Cobalt–Oxygen Nanowire Arrays. ACS Applied Materials & Interfaces, 2022, 14, 13169-13176.	8.0	16
128	Microwave-Assisted Rapid Synthesis of Platinum Nanoclusters with High Surface Area. Journal of Nanoscience and Nanotechnology, 2010, 10, 6489-6494.	0.9	15
129	Enhanced Oxygen Reduction and Methanol Oxidation Electrocatalysis over Bifunctional PtPdIr Mesoporous Hollow Nanospheres. Chemistry - an Asian Journal, 2019, 14, 3868-3874.	3.3	15
130	<i>In situ</i> electrochemical reduction-assisted exfoliation: conversion of BiOCl nanoplates into Bi nanosheets enables efficient electrocatalytic nitrogen fixation. Sustainable Energy and Fuels, 2020, 4, 3334-3339.	4.9	15
131	Mesoporous Co ₃ O ₄ for Low Temperature CO Oxidation: Effect of Calcination Temperatures on Their Catalytic Performance. Journal of Nanoscience and Nanotechnology, 2011, 11, 3843-3850.	0.9	14
132	Engineering porosity into trimetallic PtPdNi nanospheres for enhanced electrocatalytic oxygen reduction activity. Green Energy and Environment, 2018, 3, 352-359.	8.7	14
133	Tensile strained PdNi bimetallene for energy-efficient hydrogen production integrated with formate oxidation. Chemical Engineering Journal, 2022, 450, 137995.	12.7	13
134	Boronâ€Đoped PdCuAu Nanospine Assembly as an Efficient Electrocatalyst toward Formic Acid Oxidation. Chemistry - A European Journal, 2020, 26, 2493-2498.	3.3	12
135	Anchoring Au nanoparticles on Bi ultrathin nanosheets for use as an efficient heterogeneous catalyst for ambient-condition electrochemical ammonia synthesis. Sustainable Energy and Fuels, 2020, 4, 4516-4521.	4.9	12
136	Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides. Scientific Reports, 2016, 6, 26196.	3.3	11
137	PdNi/Ni Nanotubes Assembled by Mesoporous Nanoparticles for Efficient Alkaline Ethanol Oxidation Reaction. Chemistry - A European Journal, 2021, 27, 14472-14477.	3.3	11
138	PdRh bimetallene for energy-saving hydrogen production via methanol electroreforming. Applied Materials Today, 2022, 26, 101400.	4.3	11
139	Palladium Nanothorn Assembly Array for Efficient Electroreduction of Nitrogen to Ammonia. ACS Sustainable Chemistry and Engineering, 2020, 8, 14228-14233.	6.7	10
140	Tannic acid decorated AuPd lavender-like nanochains for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 15678-15683.	10.3	10
141	Regulation of the surface micro-structure and crystal phase of Pd ₂ B mesoporous nanoparticles for enhanced hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 21123-21131.	10.3	10
142	A phosphorus modified mesoporous AuRh film as an efficient bifunctional electrocatalyst for urea-assisted energy-saving hydrogen production. Journal of Materials Chemistry A, 2022, 10, 3086-3092.	10.3	10
143	Hollow PtPd Nanorods with Mesoporous Shells as an Efficient Electrocatalyst for the Methanolâ€Oxidation Reaction. Chemistry - an Asian Journal, 2019, 14, 3019-3024.	3.3	9
144	Pore-Size-Tuned Pd Films Grown on Ni Foam as an Advanced Catalyst for Electrosynthesis of Ammonia. ACS Sustainable Chemistry and Engineering, 2020, 8, 11827-11833.	6.7	9

#	Article	IF	CITATIONS
145	A P-doped PtTe mesoporous nanotube electrocatalyst. Sustainable Energy and Fuels, 2020, 4, 2950-2955.	4.9	9
146	Interstitial boron-doped nanoporous palladium film for electro-reduction of nitrogen to ammonia. Chemical Engineering Journal, 2022, 449, 137771.	12.7	9
147	Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. Nanoscale Advances, 2020, 2, 1084-1089.	4.6	8
148	ZIF-derived porous carbon composites coated on NiCo ₂ S ₄ nanotubes array toward efficient water splitting. Nanotechnology, 2020, 31, 195402.	2.6	8
149	Three-dimensional PdAuRu nanospines assemblies for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 438, 135539.	12.7	8
150	Direct fabrication of bimetallic AuPt nanobrick spherical nanoarchitectonics for the oxygen reduction reaction. New Journal of Chemistry, 2019, 43, 9628-9633.	2.8	7
151	Bimetallic IrAu mesoporous nanovesicles. Chemical Engineering Journal, 2020, 395, 125135.	12.7	7
152	Bimetallic mesoporous RhRu film for electrocatalytic nitrogen reduction to ammonia. Inorganic Chemistry Frontiers, 2021, 8, 4276-4281.	6.0	7
153	Au nanowire modified with tannic acid for enhanced electrochemical synthesis of ammonia. Materials Today Energy, 2021, 21, 100828.	4.7	7
154	Synergistic coupling of P-doped Pd4S nanoparticles with P/S-co-doped reduced graphene oxide for enhanced alkaline oxygen reduction. Chemical Engineering Journal, 2022, 429, 132194.	12.7	7
155	Phosphorus-triggered activation of PdPb nanoflowers for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 15528-15534.	10.3	7
156	A Solution Phase Synthesis of Dendritic Platinum Nanoelectrocatalysts with the Assistance of Polyoxyethylene Nonylphenyl Ether. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 245-250.	3.7	6
157	Multinary PtPdNiP truncated octahedral mesoporous nanocages for enhanced methanol oxidation electrocatalysis. New Journal of Chemistry, 2020, 44, 15492-15497.	2.8	6
158	Phosphorus modulation of a mesoporous rhodium film for enhanced nitrogen electroreduction. Nanoscale, 2021, 13, 13809-13815.	5.6	6
159	Ternary AuPS Alloy Mesoporous Film for Efficient Electroreduction of Nitrogen to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 28057-28063.	8.0	6
160	Interface functionalization of mesoporous ruthenium films with polyaniline for enhanced hydrogen evolution electrocatalysis at all pH values. Journal of Materials Chemistry A, 2022, 10, 14435-14440.	10.3	6
161	Mesoporous Co ₃ O ₄ Nanobundle Electrocatalysts. Chemistry - an Asian Journal, 2018, 13, 2093-2100.	3.3	5
162	Integration mesoporous surface and hollow cavity into PtPdRh nano-octahedra for enhanced oxygen reduction electrocatalysis. Nanotechnology, 2020, 31, 025401.	2.6	5

Hongjing Wang

#	Article	IF	CITATIONS
163	Modulating surface electronic structure of mesoporous Rh nanoparticles by Se-doping for enhanced electrochemical ammonia synthesis. Journal of Electroanalytical Chemistry, 2022, 904, 115874.	3.8	5
164	All-metallic nanorattles consisting of a Pt core and a mesoporous PtPd shell for enhanced electrocatalysis. Nanotechnology, 2019, 30, 475602.	2.6	4
165	A Mesoporous Nanorattleâ€Structured Pd@PtRu Electrocatalyst. Chemistry - an Asian Journal, 2019, 14, 3397-3403.	3.3	4
166	Facile dual tuning of PtPdP nanoparticles by metal–nonmetal co-incorporation and dendritic engineering for enhanced formic acid oxidation electrocatalysis. Nanotechnology, 2020, 31, 045401.	2.6	4
167	P-modified hollow carbon mesoporous nanospheres decorated with ultrafine OsP alloy nanoparticles for nonacidic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 13042-13047.	10.3	4
168	Ultrathin Porous WPdH Nanosheet Assemblies for Efficient Alkaline Oxygen Reduction. Energy & Fuels, 2022, 36, 7775-7781.	5.1	4
169	Tannic acid modified PdAu alloy nanowires as efficient oxygen reduction electrocatalysts. Nanotechnology, 2022, 33, 375401.	2.6	3
170	An interconnected porous Au ₃ Pt film on Ni foam: an efficient electrocatalyst for alkaline hydrogen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 4878-4883.	4.9	2
171	Mesoporous PdRu Nanocrystals for Oxygen Reduction Electrocatalysis. Energy & Fuels, 2021, 35, 13382-13388.	5.1	2
172	Urchin-like PdOs nanostructure for hydrogen evolution electrocatalysis. Nanotechnology, 2022, 33, 325401.	2.6	2
173	Interface engineering of Ni5P2 nanoparticles and a mesoporous PtRu film heterostructure on Ni foam for enhanced hydrogen evolution. Nanotechnology, 2019, 30, 485403.	2.6	1
174	Rational synthesis of Pt-based dandelion-like yolk–shell nanoparticles with enhanced oxygen reduction properties. Sustainable Energy and Fuels, 2019, 3, 3329-3334.	4.9	1
175	Porous PdAg alloy nanostructures with a concave surface for efficient electrocatalytic methanol oxidation. Nanotechnology, 2021, 32, 355402.	2.6	1
176	Electroreduction of nitrogen to ammonia over bimetallic mesoporous RuAu film. Materials Today Energy, 2022, 23, 100920.	4.7	1
177	Heterogeneous Pd-PdO mesoporous film for ammonia electrosynthesis. Nanotechnology, 2022, 33, 385703.	2.6	1