Clara Cilindre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7487135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unraveling different chemical fingerprints between a champagne wine and its aerosols. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16545-16549.	3.3	104
2	Proteomic Approach To Identify Champagne Wine Proteins as Modified by Botrytis cinerea Infection. Journal of Proteome Research, 2008, 7, 1199-1208.	1.8	81
3	Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Journal of Experimental Botany, 2012, 63, 5773-5785.	2.4	67
4	Influence of Botrytis cinerea infection on Champagne wine proteins (characterized by) Tj ETQq0 0 0 rgBT /Overle 2007, 103, 139-149.	ock 10 Tf 4.2	50 627 Td (tv 62
5	Determination of the Grape Invertase Content (Using PTAâ^'ELISA) following Various Fining Treatments versus Changes in the Total Protein Content of Wine. Relationships with Wine Foamability. Journal of Agricultural and Food Chemistry, 2005, 53, 8782-8789.	2.4	61
6	Kinetics of CO ₂ Fluxes Outgassing from Champagne Glasses in Tasting Conditions: The Role of Temperature. Journal of Agricultural and Food Chemistry, 2009, 57, 1997-2003.	2.4	47
7	Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5893-5898.	3.3	47
8	Foaming properties of various Champagne wines depending on several parameters: Grape variety, aging, protein and CO2 content. Analytica Chimica Acta, 2010, 660, 164-170.	2.6	42
9	Physiological Changes in Green Stems of <i>Vitis vinifera</i> L. cv. Chardonnay in Response to Esca Proper and Apoplexy Revealed by Proteomic and Transcriptomic Analyses. Journal of Proteome Research, 2012, 11, 461-475.	1.8	42
10	CO2 Volume Fluxes Outgassing from Champagne Glasses in Tasting Conditions: Flute versus Coupe. Journal of Agricultural and Food Chemistry, 2009, 57, 4939-4947.	2.4	38
11	Metabolic Influence of Botrytis cinerea Infection in Champagne Base Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 7237-7245.	2.4	38
12	Differential Responses of Three Grapevine Cultivars to Botryosphaeria Dieback. Phytopathology, 2014, 104, 1021-1035.	1.1	38
13	Evidence for Protein Degradation byBotrytis cinereaand Relationships with Alteration of Synthetic Wine Foaming Properties. Journal of Agricultural and Food Chemistry, 2006, 54, 5157-5165.	2.4	31
14	Monitoring Gaseous CO2 and Ethanol above Champagne Glasses: Flute versus Coupe, and the Role of Temperature. PLoS ONE, 2012, 7, e30628.	1.1	30
15	Evidence for an Extracellular Acid Proteolytic Activity Secreted by Living Cells of <i>Saccharomyces cerevisiae</i> PlR1: Impact on Grape Proteins. Journal of Agricultural and Food Chemistry, 2011, 59, 6239-6246.	2.4	29
16	Simultaneous Monitoring of Gaseous CO ₂ and Ethanol above Champagne Glasses via Micro-gas Chromatography (μGC). Journal of Agricultural and Food Chemistry, 2011, 59, 7317-7323.	2.4	24
17	Monitoring the losses of dissolved carbon dioxide from laser-etched champagne glasses. Food Research International, 2013, 54, 516-522.	2.9	24
18	Bubble dynamics in various commercial sparkling bottled waters. Journal of Food Engineering, 2015, 163, 60-70.	2.7	24

CLARA CILINDRE

#	Article	IF	CITATIONS
19	One step purification of the grape vacuolar invertase. Analytica Chimica Acta, 2009, 638, 75-78.	2.6	23
20	Flowering as the Most Highly Sensitive Period of Grapevine (Vitis vinifera L. cv Mourvèdre) to the Botryosphaeria Dieback Agents Neofusicoccum parvum and Diplodia seriata Infection. International Journal of Molecular Sciences, 2014, 15, 9644-9669.	1.8	23
21	It's time to pop a cork on champagne's proteome!. Journal of Proteomics, 2014, 105, 351-362.	1.2	23
22	Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis. Food Chemistry, 2018, 264, 255-262.	4.2	22
23	Enzymatic hydrolysis of thermo-sensitive grape proteins by a yeast protease as revealed by a proteomic approach. Food Research International, 2013, 54, 1298-1301.	2.9	19
24	Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champagne and sparkling wines. Sensors and Actuators B: Chemical, 2018, 257, 745-752.	4.0	19
25	More on the Losses of Dissolved CO ₂ during Champagne Serving: Toward a Multiparameter Modeling. Journal of Agricultural and Food Chemistry, 2012, 60, 11777-11786.	2.4	18
26	Unveiling CO2 heterogeneous freezing plumes during champagne cork popping. Scientific Reports, 2017, 7, 10938.	1.6	16
27	How Many CO ₂ Bubbles in a Glass of Beer?. ACS Omega, 2021, 6, 9672-9679.	1.6	14
28	Champagne cork popping revisited through high-speed infrared imaging: The role of temperature. Journal of Food Engineering, 2013, 116, 78-85.	2.7	12
29	Evidence for moderate losses of dissolved CO 2 during aging on lees of a champagne prestige cuvee. Journal of Food Engineering, 2018, 233, 40-48.	2.7	12
30	CO2 volume fluxes outgassing from champagne glasses: The impact of champagne ageing. Analytica Chimica Acta, 2010, 660, 29-34.	2.6	11
31	Unveiling the Interplay Between Diffusing CO ₂ and Ethanol Molecules in Champagne Wines by Classical Molecular Dynamics and ¹³ C NMR Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 4232-4237.	2.1	11
32	Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines. Annual Review of Analytical Chemistry, 2021, 14, 21-46.	2.8	9
33	How Does Gas-Phase CO ₂ Evolve in the Headspace of Champagne Glasses?. Journal of Agricultural and Food Chemistry, 2021, 69, 2262-2270.	2.4	6
34	The Role of Glass Shapes on the Release of Dissolved CO2 in Effervescent Wine. Current Research in Nutrition and Food Science, 2019, 7, 227-235.	0.3	4
35	Unveiling Carbon Dioxide and Ethanol Diffusion in Carbonated Water-Ethanol Mixtures by Molecular Dynamics Simulations. Molecules, 2021, 26, 1711.	1.7	2
36	Does the Temperature of the prise de mousse Affect the Effervescence and the Foam of Sparkling Wines?. Molecules, 2021, 26, 4434.	1.7	2

CLARA CILINDRE

#	Article	IF	CITATIONS
37	Carbon Dioxide and Ethanol Release from Champagne Glasses, Under Standard Tasting Conditions. Advances in Food and Nutrition Research, 2012, 67, 289-340.	1.5	1
38	A first step towards the mapping of gas-phase CO2 in the headspace of champagne glasses. Infrared Physics and Technology, 2020, 109, 103437.	1.3	1
39	Precipitation of Champagne Base Wine Proteins Prior to 2D Electrophoresis. Methods in Molecular Biology, 2014, 1072, 755-764.	0.4	1
40	Temperature Dependence of CO ₂ and Ethanol Diffusion in Champagne Wines: A Joint Molecular Dynamics and ¹³ C NMR Study. ACS Symposium Series, 2015, , 69-83.	0.5	0