Jonathan Lenoir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7486704/publications.pdf Version: 2024-02-01

		39113	18400
172	17,593	52	124
papers	citations	h-index	g-index
181	181	181	21548
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist, 2022, 233, 219-235.	3.5	32
2	Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 2022, 810, 151338.	3.9	39
3	Longâ€ŧerm trends in gastropod abundance and biodiversity: Disentangling effects of press versus pulse disturbances. Global Ecology and Biogeography, 2022, 31, 247-265.	2.7	6
4	Context matters: the landscape matrix determines the population genetic structure of temperate forest herbs across Europe. Landscape Ecology, 2022, 37, 1365-1384.	1.9	4
5	Coupling fossil records and traditional discrimination metrics to test how genetic information improves species distribution models of the European beech Fagus sylvatica. European Journal of Forest Research, 2022, 141, 253-265.	1.1	4
6	Unveil the unseen: Using LiDAR to capture timeâ€lag dynamics in the herbaceous layer of European temperate forests. Journal of Ecology, 2022, 110, 282-300.	1.9	10
7	Classification of European bog vegetation of the <i>Oxycoccoâ€Sphagnetea</i> class. Applied Vegetation Science, 2022, 25, .	0.9	5
8	Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecology and Evolution, 2022, 12, e8590.	0.8	11
9	Initial oak regeneration responses to experimental warming along microclimatic and macroclimatic gradients. Plant Biology, 2022, 24, 745-757.	1.8	4
10	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
11	Plant naturalizations are constrained by temperature but released by precipitation. Global Ecology and Biogeography, 2022, 31, 501-514.	2.7	8
12	Climatic niche comparisons of eastern North American and eastern Asian disjunct plant genera. Global Ecology and Biogeography, 2022, 31, 1290-1302.	2.7	7
13	The European Forest Plant Species List (EuForPlant): Concept and applications. Journal of Vegetation Science, 2022, 33, .	1.1	23
14	Global environmental changes more frequently offset than intensify detrimental effects of biological invasions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
15	Soil seed bank responses to edge effects in temperate European forests. Global Ecology and Biogeography, 2022, 31, 1877-1893.	2.7	5
16	Forest density and edge effects on soil microbial communities in deciduous forests across Europe. Applied Soil Ecology, 2022, 179, 104586.	2.1	4
17	Multiscale drivers of carabid beetle (Coleoptera: Carabidae) assemblages in small European woodlands. Global Ecology and Biogeography, 2021, 30, 165-182.	2.7	13
18	The role of arbuscular mycorrhizal fungi in nonnative plant invasion along mountain roads. New Phytologist, 2021, 230, 1156-1168.	3.5	19

#	Article	IF	CITATIONS
19	From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing. Ecological Informatics, 2021, 61, 101195.	2.3	36
20	Small scale environmental variation modulates plant defence syndromes of understorey plants in deciduous forests of Europe. Global Ecology and Biogeography, 2021, 30, 205-219.	2.7	15
21	Drivers of carbon stocks in forest edges across Europe. Science of the Total Environment, 2021, 759, 143497.	3.9	25
22	Plant taxonomic and phylogenetic turnover increases toward climatic extremes and depends on historical factors in European beech forests. Journal of Vegetation Science, 2021, 32, .	1.1	7
23	Historical continuity and spatial connectivity ensure hedgerows are effective corridors for forest plants: Evidence from the species–time–area relationship. Journal of Vegetation Science, 2021, 32, .	1.1	18
24	Phylogenetic structure of European forest vegetation. Journal of Biogeography, 2021, 48, 903-916.	1.4	8
25	Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions, 2021, 23, 1765-1779.	1.2	11
26	Designing countrywide and regional microclimate networks. Global Ecology and Biogeography, 2021, 30, 1168-1174.	2.7	9
27	Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 2021, 27, 2279-2297.	4.2	330
28	The relationship between niche breadth and range size of beech (<i>Fagus</i>) species worldwide. Journal of Biogeography, 2021, 48, 1240-1253.	1.4	25
29	Global functional variation in alpine vegetation. Journal of Vegetation Science, 2021, 32, e13000.	1.1	17
30	Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales. Journal of Vegetation Science, 2021, 32, e13016.	1.1	15
31	From zero to infinity: Minimum to maximum diversity of the planet by spatioâ€parametric Rao's quadratic entropy. Global Ecology and Biogeography, 2021, 30, 1153-1162.	2.7	21
32	Neophyte invasions in European grasslands. Journal of Vegetation Science, 2021, 32, e12994.	1.1	25
33	Alien plant invasion hotspots and invasion debt in European woodlands. Journal of Vegetation Science, 2021, 32, e13014.	1.1	19
34	Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 2021, 30, 1218-1231.	2.7	59
35	Phenological and elevational shifts of plants, animals and fungi under climate change in the <scp>E</scp> uropean <scp>A</scp> lps. Biological Reviews, 2021, 96, 1816-1835.	4.7	102
36	Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. Journal of Ecology, 2021, 109, 2629-2648.	1.9	28

#	Article	IF	CITATIONS
37	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Global Ecology and Biogeography, 2021, 30, 1514-1531.	2.7	8
38	rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back. Methods in Ecology and Evolution, 2021, 12, 1093-1102.	2.2	33
39	Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	47
40	The climatic debt is growing in the understorey of temperate forests: Stand characteristics matter. Global Ecology and Biogeography, 2021, 30, 1474-1487.	2.7	28
41	Mapping species richness of plant families in European vegetation. Journal of Vegetation Science, 2021, 32, e13035.	1.1	18
42	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	2.7	49
43	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	3.4	62
44	On the measurement of microclimate. Methods in Ecology and Evolution, 2021, 12, 1397-1410.	2.2	55
45	Once upon a time in the far south: Influence of local drivers and functional traits on plant invasion in the harsh subâ€Antarctic islands. Journal of Vegetation Science, 2021, 32, e13057.	1.1	7
46	Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Diversity and Distributions, 2021, 27, 2063-2076.	1.9	7
47	Sensitivity to habitat fragmentation across European landscapes in three temperate forest herbs. Landscape Ecology, 2021, 36, 2831-2848.	1.9	4
48	Sampling units derived from geopolitical boundaries bias biodiversity analyses. Global Ecology and Biogeography, 2021, 30, 1876-1888.	2.7	4
49	Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Science of the Total Environment, 2021, 783, 146896.	3.9	60
50	Not all species will migrate poleward as the climate warms: The case of the seven baobab species in Madagascar. Global Change Biology, 2021, 27, 6071-6085.	4.2	15
51	Remote sensing at the interface between ecology and climate sciences. Meteorological Applications, 2021, 28, e2022.	0.9	0
52	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	1.9	4
53	ForestTemp – Subâ€canopy microclimate temperatures of European forests. Global Change Biology, 2021, 27, 6307-6319.	4.2	57
54	Microclimatic edge-to-interior gradients of European deciduous forests. Agricultural and Forest Meteorology, 2021, 311, 108699.	1.9	38

#	Article	IF	CITATIONS
55	Forest fragmentation shapes the alpha–gamma relationship in plant diversity. Journal of Vegetation Science, 2020, 31, 63-74.	1.1	7
56	Contrasting microclimates among hedgerows and woodlands across temperate Europe. Agricultural and Forest Meteorology, 2020, 281, 107818.	1.9	27
57	Global fern and lycophyte richness explained: How regional and local factors shape plot richness. Journal of Biogeography, 2020, 47, 59-71.	1.4	40
58	Edge influence on understorey plant communities depends on forest management. Journal of Vegetation Science, 2020, 31, 281-292.	1.1	40
59	High ecosystem service delivery potential of small woodlands in agricultural landscapes. Journal of Applied Ecology, 2020, 57, 4-16.	1.9	46
60	Microclimatic conditions anywhere at any time!. Global Change Biology, 2020, 26, 337-339.	4.2	59
61	Assessing the impact of an invasive bryophyte on plant species richness using high resolution imaging spectroscopy. Ecological Indicators, 2020, 110, 105882.	2.6	7
62	Strong genetic structure among populations of the tick Ixodes ricinus across its range. Ticks and Tick-borne Diseases, 2020, 11, 101509.	1.1	9
63	Response to Comment on "Forest microclimate dynamics drive plant responses to warmingâ€. Science, 2020, 370, .	6.0	1
64	Toward reliable habitat suitability and accessibility models in an era of multiple environmental stressors. Ecology and Evolution, 2020, 10, 10937-10952.	0.8	16
65	Rethinking climate context dependencies in biological terms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23208-23210.	3.3	4
66	Decoupled land–sea biodiversity trends. Nature Ecology and Evolution, 2020, 4, 901-902.	3.4	3
67	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	6.0	385
68	A framework to bridge scales in distribution modeling of soil microbiota. FEMS Microbiology Ecology, 2020, 96, .	1.3	8
69	Plant diversity in hedgerows and road verges across Europe. Journal of Applied Ecology, 2020, 57, 1244-1257.	1.9	42
70	Hedging against biodiversity loss: Forest herbs' performance in hedgerows across temperate Europe. Journal of Vegetation Science, 2020, 31, 817-829.	1.1	8
71	Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. Journal of Biogeography, 2020, 47, 2210-2222.	1.4	35
72	Structural variation of forest edges across Europe. Forest Ecology and Management, 2020, 462, 117929.	1.4	35

#	Article	IF	CITATIONS
73	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
74	Direct seeding associated with a mixture of winter cover crops decreases weed abundance while increasing cash-crop yields. Soil and Tillage Research, 2020, 200, 104622.	2.6	8
75	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	3.4	67
76	The fate of pÃiramo plant assemblages in the sky islands of the northern Andes. Journal of Vegetation Science, 2020, 31, 967-980.	1.1	39
77	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	4.2	122
78	Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, 2020, 4, 1044-1059.	3.4	359
79	Moving up and over: redistribution of plants in alpine, Arctic, and Antarctic ecosystems under global change. Arctic, Antarctic, and Alpine Research, 2020, 52, 651-665.	0.4	19
80	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	3
81	Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography, 2019, 42, 467-477.	2.1	41
82	Comparing temperature data sources for use in species distribution models: From inâ€situ logging to remote sensing. Global Ecology and Biogeography, 2019, 28, 1578-1596.	2.7	104
83	Climate change threatens the most biodiverse regions of Mexico. Biological Conservation, 2019, 240, 108215.	1.9	15
84	Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography, 2019, 28, 1774-1786.	2.7	115
85	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	1.1	185
86	Alpha diversity of vascular plants in European forests. Journal of Biogeography, 2019, 46, 1919-1935.	1.4	52
87	Time-lapsing biodiversity: An open source method for measuring diversity changes by remote sensing. Remote Sensing of Environment, 2019, 231, 111192.	4.6	37
88	Assessing sampling coverage of species distribution in biodiversity databases. Journal of Vegetation Science, 2019, 30, 620-632.	1.1	11
89	Disentangling the abundance–impact relationship for invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9919-9924.	3.3	151
90	Global buffering of temperatures under forest canopies. Nature Ecology and Evolution, 2019, 3, 744-749.	3.4	374

#	Article	IF	CITATIONS
91	Advances in Microclimate Ecology Arising from Remote Sensing. Trends in Ecology and Evolution, 2019, 34, 327-341.	4.2	229
92	Incorporating microclimate into species distribution models. Ecography, 2019, 42, 1267-1279.	2.1	209
93	Functional trait variation of forest understorey plant communities across Europe. Basic and Applied Ecology, 2019, 34, 1-14.	1.2	33
94	Impact of an invasive alien plant on litter decomposition along a latitudinal gradient. Ecosphere, 2018, 9, e02097.	1.0	26
95	Intraspecific and interspecific adaptive latitudinal cline in Brassicaceae seed oil traits. American Journal of Botany, 2018, 105, 85-94.	0.8	7
96	Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey. Journal of Vegetation Science, 2018, 29, 521-531.	1.1	24
97	Analyzing remotely sensed structural and chemical canopy traits of a forest invaded by Prunus serotina over multiple spatial scales. Biological Invasions, 2018, 20, 2257-2271.	1.2	9
98	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	13.7	580
99	Land-use change interacts with climate to determine elevational species redistribution. Nature Communications, 2018, 9, 1315.	5.8	158
100	LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy. Remote Sensing of Environment, 2018, 211, 13-25.	4.6	19
101	Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 61-72.	1.4	17
102	Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecology Letters, 2018, 21, 392-401.	3.0	32
103	Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb <i>Anemone nemorosa</i> . Plant Biology, 2018, 20, 619-626.	1.8	7
104	Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 2018, 24, 1722-1740.	4.2	93
105	Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution. European Journal of Forest Research, 2018, 137, 79-92.	1.1	17
106	Modelling the distribution and compositional variation of plant communities at the continental scale. Diversity and Distributions, 2018, 24, 978-990.	1.9	37
107	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	4.7	154
108	Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study. Ecological Indicators, 2018, 85, 983-990.	2.6	35

#	Article	IF	CITATIONS
109	Lags in the response of mountain plant communities to climate change. Global Change Biology, 2018, 24, 563-579.	4.2	279
110	Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 41-50.	1.1	141
111	Microclimate variability in alpine ecosystems as stepping stones for nonâ€native plant establishment above their current elevational limit. Ecography, 2018, 41, 900-909.	2.1	44
112	Clobal trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
113	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	1.1	51
114	Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic and Applied Ecology, 2018, 30, 52-64.	1.2	11
115	What deepâ€soil profiles can teach us on deepâ€time pH dynamics after land use change?. Land Degradation and Development, 2018, 29, 2951-2961.	1.8	10
116	Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments. Parasites and Vectors, 2018, 11, 23.	1.0	42
117	Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales. Advances in Ecological Research, 2018, , 101-161.	1.4	146
118	Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environmental Research Letters, 2018, 13, 074003.	2.2	41
119	Mountain roads shift native and nonâ€native plant species' ranges. Ecography, 2017, 40, 353-364.	2.1	63
120	Classification of European beech forests: a Gordian Knot?. Applied Vegetation Science, 2017, 20, 494-512.	0.9	65
121	Using dark diversity and plant characteristics to guide conservation and restoration. Journal of Applied Ecology, 2017, 54, 1730-1741.	1.9	38
122	A unified framework to model the potential and realized distributions of invasive species within the invaded range. Diversity and Distributions, 2017, 23, 806-819.	1.9	58
123	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	6.0	2,026
124	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	2.2	89
125	Alien plant invasions in European woodlands. Diversity and Distributions, 2017, 23, 969-981.	1.9	98
126	Optimal sampling design and minimal effort for soil charcoal analyses considering the soil type and forest history. Vegetation History and Archaeobotany, 2017, 26, 627-637.	1.0	10

#	Article	IF	CITATIONS
127	Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography, 2017, 40, 253-266.	2.1	249
128	Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biological Invasions, 2017, 19, 239-254.	1.2	59
129	Invasion by the Alien Tree Prunus serotina Alters Ecosystem Functions in a Temperate Deciduous Forest. Frontiers in Plant Science, 2017, 8, 179.	1.7	67
130	Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes. BMC Ecology, 2017, 17, 31.	3.0	43
131	Biotic and abiotic drivers of intraspecific trait variation within plant populations of three herbaceous plant species along a latitudinal gradient. BMC Ecology, 2017, 17, 38.	3.0	38
132	Un cas de forêt linéaire ancienne dans les paysages ruraux : de la difficile reconnaissance des haies anciennes à l'étude de leur diversité végétale. Revue Forestiere Francaise, 2017, , 441.	0.0	2
133	Early signs of range disjunction of submountainous plant species: an unexplored consequence of future and contemporary climate changes. Global Change Biology, 2016, 22, 2094-2105.	4.2	20
134	Acido―and neutrophilic temperate forest plants display distinct shifts in ecological pH niche across northâ€western Europe. Ecography, 2016, 39, 1164-1175.	2.1	10
135	The regional species richness and genetic diversity of <scp>A</scp> rctic vegetation reflect both past glaciations and current climate. Global Ecology and Biogeography, 2016, 25, 430-442.	2.7	44
136	A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography, 2016, 43, 716-726.	1.4	73
137	Vegetation classification and biogeography of European floodplain forests and alder carrs. Applied Vegetation Science, 2016, 19, 147-163.	0.9	89
138	European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science, 2016, 19, 173-180.	0.9	247
139	Disturbance is the key to plant invasions in cold environments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14061-14066.	3.3	109
140	Ecological constraints increase the climatic debt in forests. Nature Communications, 2016, 7, 12643.	5.8	108
141	Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biological Invasions, 2016, 18, 345-353.	1.2	127
142	Ecosystem Services from Small Forest Patches in Agricultural Landscapes. Current Forestry Reports, 2016, 2, 30-44.	3.4	86
143	Caractérisation et origine des "creuses"Â: approche sous SIG (exemples en Thiérache). Physio-Géo, 2016, , 135-151.	0.5	2
144	The contribution of patchâ€scale conditions is greater than that of macroclimate in explaining local plant diversity in fragmented forests across <scp>E</scp> urope. Global Ecology and Biogeography, 2015, 24, 1094-1105.	2.7	43

#	Article	IF	CITATIONS
145	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	2.7	39
146	Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 2015, 21, 3726-3737.	4.2	124
147	Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change. Forest Ecology and Management, 2015, 342, 21-29.	1.4	13
148	Spatial patterns of water-deposited seeds control plant species richness and composition in riparian forest landscapes. Landscape Ecology, 2015, 30, 2133-2146.	1.9	25
149	Site productivity overrides competition in explaining the disturbance–diversity relationship in riparian forests. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 434-443.	1.1	7
150	Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography, 2015, 38, 578-589.	2.1	38
151	Climateâ€related range shifts – a global multidimensional synthesis and new research directions. Ecography, 2015, 38, 15-28.	2.1	733
152	Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecology and Evolution, 2014, 4, 2913-2930.	0.8	109
153	Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography, 2014, 23, 620-632.	2.7	63
154	Latitudinal and Elevational Range Shifts under Contemporary Climate Change. , 2013, , 599-611.		57
155	Productivity–diversity patterns in arctic tundra vegetation. Ecography, 2013, 36, 331-341.	2.1	19
156	Horizontal, but not vertical, biotic interactions affect fineâ€scale plant distribution patterns in a Iowâ€energy system. Ecology, 2013, 94, 671-682.	1.5	51
157	Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in northâ€western <scp>E</scp> urope. Global Ecology and Biogeography, 2013, 22, 1130-1140.	2.7	53
158	Streams are efficient corridors for plant species in forest metacommunities. Journal of Applied Ecology, 2013, 50, 1152-1160.	1.9	28
159	Mammal predator and prey species richness are strongly linked at macroscales. Ecology, 2013, 94, 1112-1122.	1.5	85
160	Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of Ecology, 2013, 101, 784-795.	1.9	315
161	The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 2013, 88, 15-30.	4.7	1,224
162	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481.	4.2	200

#	Article	IF	CITATIONS
163	Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2012, 2, 619-622.	8.1	582
164	Dispersal ability links to crossâ€scale species diversity patterns across the Eurasian Arctic tundra. Global Ecology and Biogeography, 2012, 21, 851-860.	2.7	41
165	The Alps Vegetation Database – a geo-referenced community-level archive of all terrestrial plants occurring in the Alps. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 331-332.	0.2	8
166	Changes in plant community composition lag behind climate warming in lowland forests. Nature, 2011, 479, 517-520.	13.7	645
167	Forest plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland). Journal of Vegetation Science, 2010, 21, 949-964.	1.1	65
168	Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 2010, 33, 295-303.	2.1	304
169	Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges. PLoS ONE, 2010, 5, e15734.	1.1	53
170	Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986–2006). Ecography, 2009, 32, 765-777.	2.1	109
171	Big moving day for biodiversity? A macroecological assessment of the scope for assisted colonization as a conservation strategy under global warming. IOP Conference Series: Earth and Environmental Science, 2009, 8, 012017.	0.2	5
172	A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science, 2008, 320, 1768-1771.	6.0	1,729