
Liangfang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7485783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10980-10985.	7.1	1,749
2	Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526, 118-121.	27.8	1,270
3	Cell Membrane Coating Nanotechnology. Advanced Materials, 2018, 30, e1706759.	21.0	1,100
4	Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 2014, 14, 2181-2188.	9.1	1,091
5	Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2017, 2, .	17.6	1,018
6	Self-Assembled Lipidâ^'Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano, 2008, 2, 1696-1702.	14.6	851
7	A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotechnology, 2013, 8, 336-340.	31.5	608
8	Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature Nanotechnology, 2018, 13, 1182-1190.	31.5	600
9	Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering, 2018, 2, 687-695.	22.5	520
10	Erythrocyte–Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Advanced Materials, 2017, 29, 1606209.	21.0	507
11	Artificial Micromotors in the Mouse's Stomach: A Step toward <i>in Vivo</i> Use of Synthetic Motors. ACS Nano, 2015, 9, 117-123.	14.6	435
12	Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Communications, 2017, 8, 272.	12.8	424
13	Cell membrane-camouflaged nanoparticles for drug delivery. Journal of Controlled Release, 2015, 220, 600-607.	9.9	423
14	Cargoâ€Towing Fuelâ€Free Magnetic Nanoswimmers for Targeted Drug Delivery. Small, 2012, 8, 460-467.	10.0	393
15	Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity. Advanced Materials, 2017, 29, 1703969.	21.0	392
16	Modulating Antibacterial Immunity via Bacterial Membrane-Coated Nanoparticles. Nano Letters, 2015, 15, 1403-1409.	9.1	382
17	Micromachineâ€Enabled Capture and Isolation of Cancer Cells in Complex Media. Angewandte Chemie - International Edition, 2011, 50, 4161-4164.	13.8	381
18	Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Advanced Materials, 2013, 25, 3549-3553.	21.0	374

#	Article	IF	CITATIONS
19	Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11488-11493.	7.1	364
20	Cell membrane-derived nanomaterials for biomedical applications. Biomaterials, 2017, 128, 69-83.	11.4	343
21	Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014, 6, 2730-2737.	5.6	291
22	Nanoparticle-detained toxins for safe and effective vaccination. Nature Nanotechnology, 2013, 8, 933-938.	31.5	287
23	Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano, 2015, 9, 6756-6764.	14.6	267
24	Biointerfacing and Applications of Cell Membrane-Coated Nanoparticles. Bioconjugate Chemistry, 2017, 28, 23-32.	3.6	267
25	Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity. Nano Letters, 2020, 20, 5570-5574.	9.1	262
26	How to Stabilize Phospholipid Liposomes (Using Nanoparticles). Nano Letters, 2006, 6, 694-698.	9.1	259
27	â€~Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale, 2013, 5, 2664.	5.6	253
28	Nanoparticle-based local antimicrobial drug delivery. Advanced Drug Delivery Reviews, 2018, 127, 46-57.	13.7	248
29	Turning Erythrocytes into Functional Micromotors. ACS Nano, 2014, 8, 12041-12048.	14.6	247
30	Co-Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle–Aptamer Bioconjugates. ChemMedChem, 2007, 2, 1268-1271.	3.2	245
31	Bacterial Toxin-Triggered Drug Release from Gold Nanoparticle-Stabilized Liposomes for the Treatment of Bacterial Infection. Journal of the American Chemical Society, 2011, 133, 4132-4139.	13.7	243
32	Ligand-Modified Cell Membrane Enables the Targeted Delivery of Drug Nanocrystals to Glioma. ACS Nano, 2019, 13, 5591-5601.	14.6	238
33	Erythrocyteâ€Inspired Delivery Systems. Advanced Healthcare Materials, 2012, 1, 537-547.	7.6	237
34	Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Science Robotics, 2020, 5, .	17.6	236
35	Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale, 2013, 5, 8884.	5.6	231
36	Clearance of pathological antibodies using biomimetic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13481-13486.	7.1	231

#	Article	IF	CITATIONS
37	Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opinion on Biological Therapy, 2008, 8, 1063-1070.	3.1	225
38	Nanoparticle approaches against bacterial infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 532-547.	6.1	225
39	Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 2018, 12, 109-116.	14.6	222
40	A Gold/Silver Hybrid Nanoparticle for Treatment and Photoacoustic Imaging of Bacterial Infection. ACS Nano, 2018, 12, 5615-5625.	14.6	221
41	Cellâ€Membrane oated Synthetic Nanomotors for Effective Biodetoxification. Advanced Functional Materials, 2015, 25, 3881-3887.	14.9	212
42	Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano, 2016, 10, 9536-9542.	14.6	211
43	Targeted gene silencing in vivo by platelet membrane–coated metal-organic framework nanoparticles. Science Advances, 2020, 6, eaaz6108.	10.3	208
44	Engineered Cellâ€Membrane oated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. Advanced Materials, 2020, 32, e2001808.	21.0	206
45	Biomimetic Nanotechnology toward Personalized Vaccines. Advanced Materials, 2020, 32, e1901255.	21.0	200
46	Biomembrane-Modified Field Effect Transistors for Sensitive and Quantitative Detection of Biological Toxins and Pathogens. ACS Nano, 2019, 13, 3714-3722.	14.6	197
47	Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics, 2018, 3, .	17.6	190
48	Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasoundâ€Propelled Nanomotors. Angewandte Chemie - International Edition, 2018, 57, 2657-2661.	13.8	187
49	Hydrogel Containing Nanoparticle-Stabilized Liposomes for Topical Antimicrobial Delivery. ACS Nano, 2014, 8, 2900-2907.	14.6	186
50	Safe and Immunocompatible Nanocarriers Cloaked in RBC Membranes for Drug Delivery to Treat Solid Tumors. Theranostics, 2016, 6, 1004-1011.	10.0	185
51	Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery. Annals of Biomedical Engineering, 2016, 44, 2049-2061.	2.5	183
52	Micromotors Spontaneously Neutralize Gastric Acid for pHâ€Responsive Payload Release. Angewandte Chemie - International Edition, 2017, 56, 2156-2161.	13.8	175
53	A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. Journal of Controlled Release, 2017, 264, 102-111.	9.9	168
54	Tissue repair and regeneration with endogenous stem cells. Nature Reviews Materials, 2018, 3, 174-193.	48.7	168

#	Article	IF	CITATIONS
55	Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale, 2014, 6, 65-75.	5.6	167
56	Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine, 2013, 8, 1271-1280.	3.3	166
57	Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. ACS Nano, 2017, 11, 5367-5374.	14.6	159
58	Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. Nano Letters, 2019, 19, 1914-1921.	9.1	152
59	Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials, 2016, 111, 116-123.	11.4	151
60	RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale, 2015, 7, 13680-13686.	5.6	149
61	Tâ€Cellâ€Mimicking Nanoparticles Can Neutralize HIV Infectivity. Advanced Materials, 2018, 30, e1802233.	21.0	149
62	Waterâ€Powered Cellâ€Mimicking Janus Micromotor. Advanced Functional Materials, 2015, 25, 7497-7501.	14.9	147
63	Stimuli-Responsive Liposome Fusion Mediated by Gold Nanoparticles. ACS Nano, 2010, 4, 1935-1942.	14.6	145
64	Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nature Communications, 2021, 12, 1999.	12.8	140
65	Biomimetic Platelet amouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials, 2018, 30, 1704800.	21.0	139
66	Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. Journal of Controlled Release, 2017, 263, 185-191.	9.9	136
67	Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers. ACS Nano, 2015, 9, 6450-6458.	14.6	134
68	Cell-Like Micromotors. Accounts of Chemical Research, 2018, 51, 1901-1910.	15.6	128
69	HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages. Bioconjugate Chemistry, 2015, 26, 443-451.	3.6	127
70	Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews, 2018, 125, 94-101.	13.7	125
71	Nanoparticles disguised as red blood cells to evade the immune system. Expert Opinion on Biological Therapy, 2012, 12, 385-389.	3.1	123
72	Biomimetic strategies for targeted nanoparticle delivery. Bioengineering and Translational Medicine, 2016, 1, 30-46.	7.1	122

#	Article	IF	CITATIONS
73	Nanoparticle–hydrogel superstructures for biomedical applications. Journal of Controlled Release, 2020, 324, 505-521.	9.9	117
74	Hydrogel Retaining Toxinâ€Absorbing Nanosponges for Local Treatment of Methicillinâ€Resistant <i>Staphylococcus aureus</i> Infection. Advanced Materials, 2015, 27, 3437-3443.	21.0	114
75	Inhibition of Pathogen Adhesion by Bacterial Outer Membraneâ€Coated Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 11404-11408.	13.8	114
76	DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy. Small, 2016, 12, 1117-1132.	10.0	110
77	A Bioadhesive Nanoparticle–Hydrogel Hybrid System for Localized Antimicrobial Drug Delivery. ACS Applied Materials & Interfaces, 2016, 8, 18367-18374.	8.0	110
78	Coating Nanoparticles with Gastric Epithelial Cell Membrane for Targeted Antibiotic Delivery against <i>Helicobacter pylori</i> Infection. Advanced Therapeutics, 2018, 1, 1800016.	3.2	110
79	Engineered nanoparticles mimicking cell membranes for toxin neutralization. Advanced Drug Delivery Reviews, 2015, 90, 69-80.	13.7	109
80	Genetically engineered cell membrane–coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. Science Advances, 2021, 7, .	10.3	107
81	Micromotors Go In Vivo: From Test Tubes to Live Animals. Advanced Functional Materials, 2018, 28, 1705640.	14.9	106
82	Micromotor Pills as a Dynamic Oral Delivery Platform. ACS Nano, 2018, 12, 8397-8405.	14.6	104
83	Drug Targeting via Platelet Membrane–Coated Nanoparticles. Small Structures, 2020, 1, 2000018.	12.0	104
84	Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy. Small, 2015, 11, 5483-5496.	10.0	103
85	Nanomaterials arising amid antibiotic resistance. Nature Reviews Microbiology, 2021, 19, 5-6.	28.6	102
86	Coating nanoparticles with cell membranes for targeted drug delivery. Journal of Drug Targeting, 2015, 23, 619-626.	4.4	100
87	Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale, 2016, 8, 14411-14419.	5.6	100
88	Slaved diffusion in phospholipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9118-9121.	7.1	99
89	In vivo treatment of <i>Helicobacter pylori</i> infection with liposomal linolenic acid reduces colonization and ameliorates inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17600-17605.	7.1	98
90	Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors. Advanced Biology, 2018, 2, 1700160.	3.0	98

#	Article	IF	CITATIONS
91	Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles. Biochemistry, 2021, 60, 941-955.	2.5	96
92	In Situ Capture of Bacterial Toxins for Antivirulence Vaccination. Advanced Materials, 2017, 29, 1701644.	21.0	94
93	Nanoparticleâ€Based Antivirulence Vaccine for the Management of Methicillinâ€Resistant <i>Staphylococcus aureus</i> Skin Infection. Advanced Functional Materials, 2016, 26, 1628-1635.	14.9	91
94	Biomimetic Nanoemulsions for Oxygen Delivery In Vivo. Advanced Materials, 2018, 30, e1804693.	21.0	90
95	Multimodal Enzyme Delivery and Therapy Enabled by Cell Membrane-Coated Metal–Organic Framework Nanoparticles. Nano Letters, 2020, 20, 4051-4058.	9.1	89
96	Broad‧pectrum Neutralization of Poreâ€Forming Toxins with Human Erythrocyte Membraneâ€Coated Nanosponges. Advanced Healthcare Materials, 2018, 7, e1701366.	7.6	87
97	Remote Loading of Smallâ€Molecule Therapeutics into Cholesterolâ€Enriched Cellâ€Membraneâ€Derived Vesicles. Angewandte Chemie - International Edition, 2017, 56, 14075-14079.	13.8	86
98	Biomimetic Nanoparticle Vaccines for Cancer Therapy. Advanced Biology, 2019, 3, e1800219.	3.0	84
99	A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano, 2019, 13, 11996-12005.	14.6	81
100	Engineering redâ€bloodâ€cellâ€membrane–coated nanoparticles for broad biomedical applications. AICHE Journal, 2015, 61, 738-746.	3.6	80
101	Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horizons, 2020, 5, 25-42.	8.0	80
102	Multicompartment Tubular Micromotors Toward Enhanced Localized Active Delivery. Advanced Materials, 2020, 32, e2000091.	21.0	80
103	Lipid diffusion compared in outer and inner leaflets of planar supported bilayers. Journal of Chemical Physics, 2005, 123, 211104.	3.0	77
104	A Macrophage–Magnesium Hybrid Biomotor: Fabrication and Characterization. Advanced Materials, 2019, 31, e1901828.	21.0	76
105	Nanoparticle-Based Modulation of the Immune System. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 305-326.	6.8	75
106	Effect of drug release kinetics on nanoparticle therapeutic efficacy and toxicity. Nanoscale, 2014, 6, 2321-2327.	5.6	69
107	Cell-Membrane-Cloaked Oil Nanosponges Enable Dual-Modal Detoxification. ACS Nano, 2019, 13, 7209-7215.	14.6	69
108	Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale, 2017, 9, 18423-18429.	5.6	65

#	Article	IF	CITATIONS
109	Remoteâ€Loaded Platelet Vesicles for Diseaseâ€Targeted Delivery of Therapeutics. Advanced Functional Materials, 2018, 28, 1801032.	14.9	64
110	Synthesis of Nanogels via Cell Membraneâ€Templated Polymerization. Small, 2015, 11, 4309-4313.	10.0	63
111	Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. Nanoscale, 2016, 8, 10364-10370.	5.6	63
112	Multiantigenic Nanotoxoids for Antivirulence Vaccination against Antibiotic-Resistant Gram-Negative Bacteria. Nano Letters, 2019, 19, 4760-4769.	9.1	63
113	Virusâ€Mimicking Cell Membraneâ€Coated Nanoparticles for Cytosolic Delivery of mRNA. Angewandte Chemie - International Edition, 2022, 61, .	13.8	62
114	Large-Scale Synthesis of Lipid–Polymer Hybrid Nanoparticles Using a Multi-Inlet Vortex Reactor. Langmuir, 2012, 28, 13824-13829.	3.5	59
115	Self-Assembled Colloidal Gel Using Cell Membrane-Coated Nanosponges as Building Blocks. ACS Nano, 2017, 11, 11923-11930.	14.6	59
116	Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics, 2019, 9, 7826-7848.	10.0	59
117	Nanotechnology for virus treatment. Nano Today, 2021, 36, 101031.	11.9	58
118	A Red Blood Cell Membrane-Camouflaged Nanoparticle Counteracts Streptolysin O-Mediated Virulence Phenotypes of Invasive Group A Streptococcus. Frontiers in Pharmacology, 2017, 8, 477.	3.5	57
119	White Blood Cell Membraneâ€Coated Nanoparticles: Recent Development and Medical Applications. Advanced Healthcare Materials, 2022, 11, e2101349.	7.6	55
120	Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia. Nano Letters, 2019, 19, 7816-7826.	9.1	54
121	Biomimetic Nanosponges Suppress In Vivo Lethality Induced by the Whole Secreted Proteins of Pathogenic Bacteria. Small, 2019, 15, e1804994.	10.0	53
122	Cell Membrane-Coated Nanoparticles As an Emerging Antibacterial Vaccine Platform. Vaccines, 2015, 3, 814-828.	4.4	52
123	Toxoid Vaccination against Bacterial Infection Using Cell Membrane-Coated Nanoparticles. Bioconjugate Chemistry, 2018, 29, 604-612.	3.6	46
124	Surface Glycan Modification of Cellular Nanosponges to Promote SARS-CoV-2 Inhibition. Journal of the American Chemical Society, 2021, 143, 17615-17621.	13.7	46
125	ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. Journal of the American Chemical Society, 2021, 143, 12194-12201.	13.7	42
126	Biomembraneâ€Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Advanced Materials, 2022, 34, e2107177.	21.0	41

#	Article	IF	CITATIONS
127	Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Advanced Drug Delivery Reviews, 2021, 179, 114006.	13.7	39
128	Cellular Nanosponges for Biological Neutralization. Advanced Materials, 2022, 34, e2107719.	21.0	39
129	Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor Immunity. Advanced Materials, 2021, 33, e2103505.	21.0	38
130	Bacterial membrane vesicles for vaccine applications. Advanced Drug Delivery Reviews, 2022, 185, 114294.	13.7	38
131	Bacteria-Inspired Nanomedicine. ACS Applied Bio Materials, 2021, 4, 3830-3848.	4.6	37
132	Nanomaterial Biointerfacing via Mitochondrial Membrane Coating for Targeted Detoxification and Molecular Detection. Nano Letters, 2021, 21, 2603-2609.	9.1	37
133	Selective cell death of latently HIV-infected CD4+ T cells mediated by autosis inducing nanopeptides. Cell Death and Disease, 2019, 10, 419.	6.3	36
134	Acute myeloid leukemia cell membrane-coated nanoparticles for cancer vaccination immunotherapy. Leukemia, 2022, 36, 994-1005.	7.2	33
135	Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo. International Journal of Antimicrobial Agents, 2016, 48, 690-694.	2.5	32
136	CD4 ⁺ T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. MBio, 2020, 11, .	4.1	32
137	Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis. Nature Communications, 2021, 12, 4136.	12.8	32
138	Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions. Nature Photonics, 2017, 11, 352-355.	31.4	31
139	A Novel Biomimetic Nanosponge Protects the Retina from the Enterococcus faecalis Cytolysin. MSphere, 2017, 2, .	2.9	31
140	Nanotoxoid vaccines. Nano Today, 2014, 9, 401-404.	11.9	30
141	Three-dimensional transistor arrays for intra- and inter-cellular recording. Nature Nanotechnology, 2022, 17, 292-300.	31.5	30
142	Disarming Pore-Forming Toxins with Biomimetic Nanosponges in Intraocular Infections. MSphere, 2019, 4, .	2.9	29
143	Biomimetic Virulomics for Capture and Identification of Cell-Type Specific Effector Proteins. ACS Nano, 2017, 11, 11831-11838.	14.6	27
144	Preparation of Particulate Polymeric Therapeutics for Medical Applications. Small Methods, 2017, 1, 1700147.	8.6	27

#	Article	IF	CITATIONS
145	Natural display of nuclear-encoded RNA on the cell surface and its impact on cell interaction. Genome Biology, 2020, 21, 225.	8.8	27
146	A Biomimetic Nanoparticle to "Lure and Kill―Phospholipaseâ€A2. Angewandte Chemie - International Edition, 2020, 59, 10461-10465.	13.8	26
147	Human Platelet Membrane Functionalized Microchips with Plasmonic Codes for Cancer Detection. Advanced Functional Materials, 2019, 29, 1902669.	14.9	25
148	Erythrocyte-Coated Nanoparticles Block Cytotoxic Effects of Group B Streptococcus β-Hemolysin/Cytolysin. Frontiers in Pediatrics, 2019, 7, 410.	1.9	25
149	Zinc Microrocket Pills: Fabrication and Characterization toward Active Oral Delivery. Advanced Healthcare Materials, 2020, 9, e2000900.	7.6	25
150	Biomimetic Targeting of Nanoparticles to Immune Cell Subsets via Cognate Antigen Interactions. Molecular Pharmaceutics, 2018, 15, 3723-3728.	4.6	23
151	A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Advanced Science, 2021, 8, 2100389.	11.2	23
152	<scp>Cartilageâ€ŧargeting ultrasmall lipidâ€polymer</scp> hybrid nanoparticles for the prevention of cartilage degradation. Bioengineering and Translational Medicine, 2021, 6, e10187.	7.1	22
153	Fabrication and characterization of a 3D bioprinted nanoparticle-hydrogel hybrid device for biomimetic detoxification. Nanoscale, 2017, 9, 14506-14511.	5.6	21
154	Engineering biological interactions on the nanoscale. Current Opinion in Biotechnology, 2019, 58, 1-8.	6.6	21
155	Nanoparticle approaches against SARS-CoV-2 infection. Current Opinion in Solid State and Materials Science, 2021, 25, 100964.	11.5	21
156	Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasoundâ€Propelled Nanomotors. Angewandte Chemie, 2018, 130, 2687-2691.	2.0	20
157	Ligand–receptor binding on nanoparticle-stabilized liposome surfaces. Soft Matter, 2007, 3, 551-553.	2.7	19
158	Composite Thermoresponsive Hydrogel with Auranofin‣oaded Nanoparticles for Topical Treatment of Vaginal Trichomonad Infection. Advanced Therapeutics, 2019, 2, 1900157.	3.2	19
159	Engineered Biomimetic Platelet Membrane-Coated Nanoparticles Block Staphylococcus aureus Cytotoxicity and Protect Against Lethal Systemic Infection. Engineering, 2021, 7, 1149-1156.	6.7	19
160	Micromotors Spontaneously Neutralize Gastric Acid for pHâ€Responsive Payload Release. Angewandte Chemie, 2017, 129, 2188-2193.	2.0	18
161	Enhanced anti-tumor immune responses and delay of tumor development in human epidermal growth factor receptor 2 mice immunized with an immunostimulatory peptide in poly(D,L-lactic-co-glycolic) acid nanoparticles. Breast Cancer Research, 2015, 17, 48.	5.0	17
162	Group A Streptococcal S Protein Utilizes Red Blood Cells as Immune Camouflage and Is a Critical Determinant for Immune Evasion. Cell Reports, 2019, 29, 2979-2989.e15.	6.4	16

#	Article	IF	CITATIONS
163	Recent Progress in Capturing and Neutralizing Inflammatory Cytokines. CCS Chemistry, 2020, 2, 376-389.	7.8	16
164	Nanodelivery of STING agonists against cancer and infectious diseases. Molecular Aspects of Medicine, 2022, 83, 101007.	6.4	15
165	Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
166	Current and forthcoming approaches for systemic detoxification. Advanced Drug Delivery Reviews, 2015, 90, 1-2.	13.7	13
167	Biomimetic Nanosponges for Treating Antibody-Mediated Autoimmune Diseases. Bioconjugate Chemistry, 2018, 29, 870-877.	3.6	12
168	Virusâ€Mimicking Cell Membraneâ€Coated Nanoparticles for Cytosolic Delivery of mRNA. Angewandte Chemie, 0, , .	2.0	12
169	Combinatorial Nanotherapeutics: Rewiring, Then Killing, Cancer Cells. Science Signaling, 2014, 7, pe13.	3.6	10
170	CD4+ T cell-mimicking nanoparticles encapsulating DIABLO/SMAC mimetics broadly neutralize HIV-1 and selectively kill HIV-1-infected cells. Theranostics, 2021, 11, 9009-9021.	10.0	10
171	Nanotoxoids: Biomimetic Nanoparticle Vaccines against Infections. Advanced Therapeutics, 2021, 4, 2100072.	3.2	10
172	Codelivery of Antigens and Adjuvant in Polymeric Nanoparticles Coated With Native Parasite Membranes Induces Protective Mucosal Immunity Against <i>Giardia lamblia</i> . Journal of Infectious Diseases, 2022, 226, 319-323.	4.0	8
173	Gold(I) Phosphine Derivatives with Improved Selectivity as Topically Active Drug Leads to Overcome 5-Nitroheterocyclic Drug Resistance in <i>Trichomonas vaginalis</i> . Journal of Medicinal Chemistry, 2021, 64, 6608-6620.	6.4	7
174	Organotropic Targeting of Biomimetic Nanoparticles to Treat Lung Disease. Bioconjugate Chemistry, 2022, 33, 586-593.	3.6	7
175	Combatting Infections with Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800392.	7.6	6
176	A Biomimetic Nanoparticle to "Lure and Kill―Phospholipaseâ€A2. Angewandte Chemie, 2020, 132, 10547-10551.	2.0	6
177	Inhibition of Pathogen Adhesion by Bacterial Outer Membrane oated Nanoparticles. Angewandte Chemie, 2019, 131, 11526-11530.	2.0	4
178	Remote Loading of Smallâ€Molecule Therapeutics into Cholesterolâ€Enriched Cellâ€Membraneâ€Derived Vesicles. Angewandte Chemie, 2017, 129, 14263-14267.	2.0	2
179	Exploring Frontiers in Research and Teaching: NanoEngineering and Chemical Engineering at UC San Diego. ACS Nano, 2020, 14, 9203-9216.	14.6	2
180	Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles. Angewandte Chemie, 2022, 134, .	2.0	2

#	Article	IF	CITATIONS
181	Cell membrane-coated nanoparticles and their biomedical applications. , 2021, , .		0
182	Titelbild: Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles (Angew. Chem. 24/2022). Angewandte Chemie, 2022, 134, .	2.0	0