
Mimoun Azzouz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/748540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delivery of therapeutic AAV9 vectors via cisterna magna to treat neurological disorders. Trends in Molecular Medicine, 2022, 28, 79-80.	3.5	4
2	Circumventing the packaging limit of AAV-mediated gene replacement therapy for neurological disorders. Expert Opinion on Biological Therapy, 2022, 22, 1163-1176.	1.4	19
3	SPG15 protein deficits are at the crossroads between lysosomal abnormalities, altered lipid metabolism and synaptic dysfunction. Human Molecular Genetics, 2022, 31, 2693-2710.	1.4	6
4	SMN-deficient cells exhibit increased ribosomal DNA damage. Life Science Alliance, 2022, 5, e202101145.	1.3	5
5	<i>C9ORF72</i> -derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance, 2022, 5, e202101276.	1.3	6
6	Towards 3D Bioprinted Spinal Cord Organoids. International Journal of Molecular Sciences, 2022, 23, 5788.	1.8	11
7	Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell, 2021, 20, e13281.	3.0	31
8	Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO Journal, 2021, 40, e106389.	3.5	32
9	Reply to: Gene therapy to cure haemophilia: Is robust scientific inquiry the missing factor?. Haemophilia, 2021, 27, e628-e629.	1.0	0
10	SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2021, 16, 53.	4.4	13
11	Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2021, 15, 783624.	1.4	13
12	Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking. Human Molecular Genetics, 2020, 29, 320-334.	1.4	45
13	SOD1-targeting therapies for neurodegenerative diseases: a review of current findings and future potential. Expert Opinion on Orphan Drugs, 2020, 8, 379-392.	0.5	2
14	Identification of single nucleotide variants in the Moroccan population by whole-genome sequencing. BMC Genetics, 2020, 21, 111.	2.7	3
15	AAV9â€mediated AIRE gene delivery clears circulating antibodies and tissue Tâ€cell infiltration in a mouse model of autoimmune polyglandular syndrome typeâ€1. Clinical and Translational Immunology, 2020, 9, e1166.	1.7	6
16	The hybrid AAVP tool gets an upgrade. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18162-18164.	3.3	1
17	Plastin 3 Promotes Motor Neuron Axonal Growth and Extends Survival in a Mouse Model of Spinal Muscular Atrophy. Molecular Therapy - Methods and Clinical Development, 2018, 9, 81-89.	1.8	42
18	Translating SOD1 Gene Silencing toward the Clinic: A Highly Efficacious, Off-Target-free, and Biomarker-Supported Strategy for fALS. Molecular Therapy - Nucleic Acids, 2018, 12, 75-88.	2.3	33

MIMOUN AZZOUZ

#	Article	IF	CITATIONS
19	Meta-Analysis of Autoimmune Regulator-Regulated Genes in Human and Murine Models: A Novel Human Model Provides Insights on the Role of Autoimmune Regulator in Regulating STAT1 and STAT1-Regulated Genes. Frontiers in Immunology, 2018, 9, 1380.	2.2	4
20	Viral delivery of C9ORF72 hexanucleotide repeat expansions in mice lead to repeat length dependent neuropathology and behavioral deficits DMM Disease Models and Mechanisms, 2017, 10, 859-868.	1.2	25
21	Gene Therapy in the Nervous System: Failures and Successes. Advances in Experimental Medicine and Biology, 2017, 1007, 241-257.	0.8	6
22	C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nature Neuroscience, 2017, 20, 1225-1235.	7.1	138
23	Site Specific Modification of Adeno-Associated Virus Enables Both Fluorescent Imaging of Viral Particles and Characterization of the Capsid Interactome. Scientific Reports, 2017, 7, 14766.	1.6	15
24	SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nature Communications, 2017, 8, 16063.	5.8	106
25	C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten. Human Molecular Genetics, 2017, 26, 1133-1145.	1.4	23
26	Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight, 2016, 1, e87908.	2.3	65
27	AAV9-mediated central nervous system–targeted gene delivery via cisterna magna route in mice. Molecular Therapy - Methods and Clinical Development, 2016, 3, 15055.	1.8	37
28	Deficiency in the mRNA export mediator Gle1 impairs Schwann cell development in the zebrafish embryo. Neuroscience, 2016, 322, 287-297.	1.1	7
29	Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach For Parkinson's Disease and Other Brain Disorders. Molecular Therapy, 2016, 24, 746-758.	3.7	38
30	LRP-1-mediated intracellular antibody delivery to the Central Nervous System. Scientific Reports, 2015, 5, 11990.	1.6	113
31	Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime. Scientific Reports, 2015, 5, 12621.	1.6	37
32	The AIRE -230Y Polymorphism Affects AIRE Transcriptional Activity: Potential Influence on AIRE Function in the Thymus. PLoS ONE, 2015, 10, e0127476.	1.1	13
33	Current developments in gene therapy for amyotrophic lateral sclerosis. Expert Opinion on Biological Therapy, 2015, 15, 935-947.	1.4	30
34	PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy. Molecular Therapy, 2015, 23, 270-277.	3.7	47
35	Adeno-Associated Vectors for Gene Delivery to the Nervous System. Neuromethods, 2015, , 1-22.	0.2	2
36	PTEN regulates AMPA receptor-mediated cell viability in iPS-derived motor neurons. Cell Death and Disease, 2014, 5, e1096-e1096.	2.7	23

MIMOUN AZZOUZ

#	Article	IF	CITATIONS
37	Current and investigational treatments for spinal muscular atrophy. Expert Opinion on Orphan Drugs, 2014, 2, 465-476.	0.5	1
38	Gene Therapy: A Promising Approach to Treating Spinal Muscular Atrophy. Human Gene Therapy, 2014, 25, 575-586.	1.4	20
39	Early Detection of Motor Dysfunction in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis (ALS) Using Home Cage Running Wheels. PLoS ONE, 2014, 9, e107918.	1.1	16
40	Microscopy: Progress and prospect. Journal of Microscopy and Ultrastructure, 2013, 1, 63.	0.1	0
41	Viral Delivery of Antioxidant Genes as a Therapeutic Strategy in Experimental Models of Amyotrophic Lateral Sclerosis. Molecular Therapy, 2013, 21, 1486-1496.	3.7	41
42	Encapsulation of Biomacromolecules within Polymersomes by Electroporation. Angewandte Chemie - International Edition, 2012, 51, 11122-11125.	7.2	101
43	PTEN: A molecular target for neurodegenerative disorders. Translational Neuroscience, 2012, 3, .	0.7	13
44	Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS). PLoS ONE, 2011, 6, e23244.	1.1	80
45	Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain, 2011, 134, 506-517.	3.7	71
46	Systemic Delivery of scAAV9 Expressing SMN Prolongs Survival in a Model of Spinal Muscular Atrophy. Science Translational Medicine, 2010, 2, 35ra42.	5.8	246
47	PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Human Molecular Genetics, 2010, 19, 3159-3168.	1.4	115
48	Dopamine Gene Therapy for Parkinson's Disease in a Nonhuman Primate Without Associated Dyskinesia. Science Translational Medicine, 2009, 1, 2ra4.	5.8	159
49	Gene therapy for neurodegenerative diseases based on lentiviral vectors. Progress in Brain Research, 2009, 175, 187-200.	0.9	38
50	Development and Applications of Non-HIV-Based Lentiviral Vectors in Neurological Disorders. Current Gene Therapy, 2008, 8, 406-418.	0.9	31
51	Gene Therapy for ALS: Progress and prospects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 1122-1127.	1.8	28
52	Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clinical Science, 2006, 110, 37-46.	1.8	29
53	Retinoic acid receptor β2 promotes functional regeneration of sensory axons in the spinal cord. Nature Neuroscience, 2006, 9, 243-250.	7.1	119
54	Lentivectorâ€mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. European Journal of Neuroscience, 2005, 22, 2587-2595.	1.2	84

MIMOUN AZZOUZ

#	Article	IF	CITATIONS
55	Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Medicine, 2005, 11, 429-433.	15.2	465
56	Therapeutic gene silencing in neurological disorders, using interfering RNA. Journal of Molecular Medicine, 2005, 83, 413-419.	1.7	28
57	Trophic activity of Rabies G protein-pseudotyped equine infectious anemia viral vector mediated IGF-I motor neuron gene transfer in vitro. Neurobiology of Disease, 2005, 20, 694-700.	2.1	7
58	Erratum to "Transduction patterns of pseudotyped lentiviral vectors in the nervous system― [Molecular Therapy 9: 101–111, doi: 10.1016/j.mthe.2003.09.017]. Molecular Therapy, 2004, 9, 765.	3.7	1
59	VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 2004, 429, 413-417.	13.7	569
60	Transduction Patterns of Pseudotyped Lentiviral Vectors in the Nervous System. Molecular Therapy, 2004, 9, 101-111.	3.7	138
61	Lentiviral vectors for treating and modeling human CNS disorders. Journal of Gene Medicine, 2004, 6, 951-962.	1.4	68
62	Local GDNF expression mediated by lentiviral vector protects facial nerve motoneurons but not spinal motoneurons in SOD1G93A transgenic mice. Neurobiology of Disease, 2004, 16, 139-149.	2.1	47
63	Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. NeuroReport, 2004, 15, 985-990.	0.6	52
64	Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. Journal of Clinical Investigation, 2004, 114, 1726-1731.	3.9	183
65	Non-Primate EIAV-Based Lentiviral Vectors as Gene Delivery System for Motor Neuron Diseases. Current Gene Therapy, 2004, 4, 277-286.	0.9	26
66	Multicistronic Lentiviral Vector-Mediated Striatal Gene Transfer of Aromatic l-Amino Acid Decarboxylase, Tyrosine Hydroxylase, and GTP Cyclohydrolase I Induces Sustained Transgene Expression, Dopamine Production, and Functional Improvement in a Rat Model of Parkinson's Disease Journal of Neuroscience, 2002, 22, 10302-10312.	1.7	196
67	Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Human Molecular Genetics, 2001, 10, 2109-2121.	1.4	385
68	Lentiviral vectors for the treatment of neurodegenerative diseases. Current Opinion in Molecular Therapeutics, 2001, 3, 476-81.	2.8	9
69	Prevention of mutant SOD1 motoneuron degeneration by copper chelatorsin vitro. , 2000, 42, 49-55.		41
70	Complete and Long-Term Rescue of Lesioned Adult Motoneurons by Lentiviral-Mediated Expression of Glial Cell Line-Derived Neurotrophic Factor in the Facial Nucleus. Journal of Neuroscience, 2000, 20, 5587-5593.	1.7	170
71	Increased motoneuron survival and improved neuromuscular function in transgenic ALS mice after intraspinal injection of an adeno-associated virus encoding Bcl-2. Human Molecular Genetics, 2000, 9, 803-811.	1.4	116
72	Compensatory mechanism of motor defect in SOD1 transgenic mice by overactivation of striatal cholinergic neurons. NeuroReport, 1999, 10, 1013-1018.	0.6	13

#	Article	IF	CITATIONS
73	Progressive motor neuron impairment in an animal model of familial amyotrophic lateral sclerosis. , 1997, 20, 45-51.		95
74	Progressive Motor Neuron Impairment in an Animal Model of Familial Amyotrophic Lateral Sclerosis. , 1997, , 485-490.		0
75	Enhancement of Mouse Sciatic Nerve Regeneration by the Long Chain Fatty Alcohol,N-Hexacosanol. Experimental Neurology, 1996, 138, 189-197.	2.0	31
76	Electromyographical and Motor Performance Studies in thepmnMouse Model of Neurodegenerative Disease. Neurobiology of Disease, 1996, 3, 137-147.	2.1	43