
Takahiro Kanno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7485233/publications.pdf Version: 2024-02-01

Τλκλημο Κληνιο

#	Article	IF	CITATIONS
1	A pneumatic rotary actuator for forceps tip rotation. Sensors and Actuators A: Physical, 2022, 333, 113222.	2.0	3
2	Running Motion Assistance Using a Soft Gait-Assistive Suit and Its Experimental Validation. IEEE Access, 2021, 9, 94700-94713.	2.6	4
3	Pneumatically driven surgical forceps displaying a magnified grasping torque. International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16, e2051.	1.2	4
4	Threeâ€dimensional posture estimation of robot forceps using endoscope with convolutional neural network. International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16, e2062.	1.2	3
5	Suturing Support by Human Cooperative Robot Control Using Deep Learning. IEEE Access, 2020, 8, 167739-167746.	2.6	10
6	Development of Pneumatically Driven Surgical Robot for Catheter Ablation. , 2020, , .		2
7	Pressure Control of a Pneumatic Artificial Muscle Including Pneumatic Circuit Model. IEEE Access, 2020, 8, 60526-60538.	2.6	10
8	Pneumatically Driven Surgical Instrument with Attach/Detachment Mechanism and Force Sensibility. , 2019, , .		0
9	A Motion Control of Soft Gait Assistive Suit by Gait Phase Detection Using Pressure Information. Applied Sciences (Switzerland), 2019, 9, 2869.	1.3	14
10	Development of the extension type pneumatic soft actuator with built-in displacement sensor. Sensors and Actuators A: Physical, 2019, 300, 111623.	2.0	21
11	Robotic Forceps without Position Sensors using Visual SLAM. , 2019, , .		0
12	Model of a Coil-Reinforced Cylindrical Soft Actuator. Applied Sciences (Switzerland), 2019, 9, 2109.	1.3	9
13	Robots in laparoscopic surgery: current and future status. BMC Biomedical Engineering, 2019, 1, 12.	1.7	26
14	Development of Three-Fingered End-Effector Using Pneumatic Soft Actuators. , 2019, , .		4
15	Underwater Walking Using Soft Sensorless Gait Assistive Suit. , 2019, , .		3
16	Development of Forceps Manipulator Using Pneumatic Soft Actuator for a Bending Joint of Forceps Tip. , 2019, , .		8
17	Pneumatically driven surgical instrument capable of estimating translational force and grasping force. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15, e1983.	1.2	10

18 Tele-Operation of Robot using Facial Feature Point Detection. , 2019, , .

Τακαμικό Κάννο

#	Article	IF	CITATIONS
19	Evaluation of a pneumatic surgical robot with dynamic force feedback. Journal of Robotic Surgery, 2019, 13, 413-421.	1.0	11
20	Spherical Input Interface Capable of Haptic Presentation Using Air Pressure. The Proceedings of the Symposium on the Motion and Vibration Control, 2019, 2019.16, C208.	0.0	0
21	Development of a muscle strength training device with variable resistance using pneumatic artificial rubber muscle. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2019, 2019, 1P1-R01.	0.0	0
22	Delay compensation using machine learning in bilateral control based on wave variables. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2019, 2019, 2A2-C14.	0.0	0
23	Single-Master Dual-Slave Surgical Robot With Automated Relay of Suture Needle. IEEE Transactions on Industrial Electronics, 2018, 65, 6343-6351.	5.2	37
24	Grasping force estimation in robotic forceps using a soft pneumatic actuator with a built-in sensor. Sensors and Actuators A: Physical, 2018, 271, 124-130.	2.0	20
25	A Master–Slave Integrated Surgical Robot With Active Motion Transformation Using Wrist Axis. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1215-1225.	3.7	23
26	Development of a Poppet-Type Pneumatic Servo Valve. Applied Sciences (Switzerland), 2018, 8, 2094.	1.3	7
27	Tele-Operation of Robot by Image Processing of Markers Attached to Operator's Head. , 2018, , .		3
28	Development of Master-slave Type Lower Limb Motion Teaching System. , 2018, , .		3
29	Robotic Forceps Driven by Extension Type Pneumatic Soft Actuator. , 2018, , .		3
30	Surgical Robot With Variable Remote Center of Motion Mechanism Using Flexible Structure. Journal of Mechanisms and Robotics, 2018, 10, .	1.5	9
31	Implementing pseudo haptic feedback in a semi-isometric master interface for robotic surgery. International Journal of Advanced Robotic Systems, 2017, 14, 172988141773388.	1.3	1
32	Development of a pinch-type servo valve embedded in a pneumatic artificial rubber muscle. , 2017, , .		3
33	Development of minimally invasive lifting device using extension and flexion of pneumatic soft actuator for laparoscopic surgery. , 2017, , .		3
34	Effect of robot operation by a camera with the eye tracking control. , 2017, , .		10
35	A cornea holding device for transplantation surgery using negative pressure. , 2017, , .		4
36	Development of forceps gripper using a balloon soft pneumatic actuator. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2017, 2017, 1P1-K01.	0.0	0

Τακαμικό Κάννο

#	Article	IF	CITATIONS
37	Development of pneumatically driven forceps manipulator with tip rotation mechanism. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2017, 2017, 1P1-K03.	0.0	Ο
38	Development of Master-Slave Integrated Surgical System Operated by an Elastic-Body. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2017, 2017, 1P1-L03.	0.0	0
39	Human-integrated automation of suturing task with one-master two-slave system for laparoscopic surgery. , 2016, , .		4
40	A novel RCM mechanism using pneumatically driven flexible joint for laparoscopic forceps holder. , 2016, , .		2
41	Pneumatically-driven hand-held forceps with wrist joint operated by built-in master controller. , 2016, , .		0
42	Effect of force feedback on a bulldozer-type robot. , 2016, , .		4
43	Thin-diameter chopsticks robot for Laparoscopic Surgery. , 2016, , .		3
44	Pneumatically Driven Multi-DOF Surgical Forceps Manipulator with a Bending Joint Mechanism Using Elastic Bodies. Journal of Robotics and Mechatronics, 2016, 28, 559-567.	0.5	7
45	Pneumatically-Driven Hand-held Forceps with Wrist Joint Operated by Built-in Master Controller. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2016, 2016, 1A1-02a7.	0.0	1
46	A Haptic Interface Displaying a Grasping Force using Pneumatic Bellows for Surgical Robot Systems. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2016, 2016, 1A2-01b7.	0.0	0
47	Compact haptic device using a pneumatic bellows for teleoperation of a surgical robot. , 2015, , .		4
48	Research on a Master Manipulator Using an Isometric Interface for Translation in Robotic Surgery. International Journal of Advanced Robotic Systems, 2015, 12, 128.	1.3	4
49	A Pneumatically Driven Surgical Manipulator With a Flexible Distal Joint Capable of Force Sensing. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2950-2961.	3.7	63
50	A walking assistive device with intention detection using back-driven pneumatic artificial muscles. , 2015, , .		19
51	A Forceps Manipulator With Flexible 4-DOF Mechanism for Laparoscopic Surgery. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1170-1178.	3.7	24
52	Pneumatically driven handheld forceps with force display operated by motion sensor. , 2015, , .		4
53	1A1-E05 Pneumatically driven multi-degree-of-freedom forceps manipulator using an elastic body to bend. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2015, 2015, _1A1-E05_11A1-E05_4.	0.0	0
54	PneumaticWalking Assistive System with a Soft Exoskeleton and a Follower Robot for Power Source. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2015, 2015.6, 339-340.	0.0	0

Τακαμικό Κάννο

#	Article	IF	CITATIONS
55	Development of Surgical Forceps Manipulator Using Flexible Joint and Two Pneumatic Cylinder to Two Degree-of-Freedom Flexion. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2015, 2015.6, 146-147.	0.0	0
56	2A2-J03 Evaluation of Walking Assistive Device Using Back-Drivability of Pneumatic Artificial Muscles. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2015, 2015, _2A2-J03_12A2-J03_4.	0.0	0
57	1A1-C06 Development of a Haptic Interface for Surgical Robots Using a Pneumatic Bellows and a Motion Sensor. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2015, 2015, _1A1-C06_11A1-C06_4.	0.0	0
58	Dexterous and Lightweight Robotic Hand-held Forceps for Laparoscopy Surgery. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2015, 2015.6, 23-24.	0.0	0
59	Design of a 4-DOF forceps manipulator for robotic surgery. , 2013, , .		2
60	Avoiding conflicts of operators in multi-user teleoperation systems. , 2013, , .		1
61	Evaluation and Derivation of Robust Robot Trajectories Based on Parameter Space Representation. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2013, 79, 2362-2372.	0.2	0
62	Multilateral teleoperation control over time-delayed computer networks using wave variables. , 2012, , ,		30
63	Usability Evaluation of Variable-Scale Microteleoperation System. Journal of Robotics and Mechatronics, 2010, 22, 659-668.	0.5	0
64	Variable-Scale Bilateral Control for Micro Teleoperation. Journal of the Robotics Society of Japan, 2009, 27, 239-248.	0.0	3
65	Robust variable-scale bilateral control for micro teleoperation. , 2008, , .		20