
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7485221/publications.pdf Version: 2024-02-01

SHU KONG SO

#	Article	IF	CITATIONS
1	Organic Semiconductor–Insulator Blends for Organic Fieldâ€Effect Transistors. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	2
2	Reducing Energy Disorder for Efficient and Stable Snâ^'Pb Alloyed Perovskite Solar Cells Angewandte Chemie, 2022, 134, .	1.6	3
3	Reducing Energy Disorder for Efficient and Stable Snâ^'Pb Alloyed Perovskite Solar Cells Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
4	Heat transfer in binary and ternary bulk heterojunction solar cells. Applied Physics Letters, 2022, 120, 143301.	1.5	1
5	Highly Semitransparent Indoor Nonfullerene Organic Solar Cells Based on Benzodithiopheneâ€Bridged Porphyrin Dimers. Energy Technology, 2022, 10, .	1.8	9
6	Palladium(II) and Platinum(II) Porphyrin Donors for Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 4916-4925.	2.5	9
7	Unraveling Urbach Tail Effects in High-Performance Organic Photovoltaics: Dynamic vs Static Disorder. ACS Energy Letters, 2022, 7, 1971-1979.	8.8	42
8	Thiophene–Perylenediimide Bridged Dimeric Porphyrin Donors Based on the Donor–Acceptor–Donor Structure for Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 7287-7296.	2.5	4
9	Suppressing Ion Migration across Perovskite Grain Boundaries by Polymer Additives. Advanced Functional Materials, 2021, 31, 2006802.	7.8	66
10	Heat transfer in photovoltaic polymers and bulkâ€heterojunctions investigated by scanning photothermal deflection technique. Nano Select, 2021, 2, 768-778.	1.9	4
11	Chromaticity manipulation of indoor photovoltaic cells. Applied Physics Letters, 2021, 118, .	1.5	7
12	Organic indoor light harvesters achieving recorded output power over 500% enhancement under thermal radiated illuminances. Science Bulletin, 2021, 66, 1641-1641.	4.3	9
13	Correlating the Molecular Structure of Aâ€DA′Dâ€A Type Nonâ€Fullerene Acceptors to Its Heat Transfer and Charge Transport Properties in Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2101627.	7.8	25
14	Over 13% Efficient Organic Solar Cells Based on Lowâ€Cost Pentacyclic Aâ€DA′Dâ€Aâ€Type Nonfullerene Acceptor. Solar Rrl, 2021, 5, 2100281.	3.1	17
15	Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nature Photonics, 2021, 15, 681-689.	15.6	255
16	Approaching disorder-tolerant semiconducting polymers. Nature Communications, 2021, 12, 5723.	5.8	54
17	Boosting charge and thermal transport – role of insulators in stable and efficient n-type polymer transistors. Journal of Materials Chemistry C, 2021, 9, 12281-12290.	2.7	5
18	High throughput screening of novel tribromide perovskite materials for high-photovoltage solar cells. Journal of Materials Chemistry A, 2021, 9, 25502-25512.	5.2	8

#	Article	IF	CITATIONS
19	Device characteristics and material developments of indoor photovoltaic devices. Materials Science and Engineering Reports, 2020, 139, 100517.	14.8	108
20	From 33% to 57% – an elevated potential of efficiency limit for indoor photovoltaics. Journal of Materials Chemistry A, 2020, 8, 1717-1723.	5.2	77
21	Deciphering the Role of Fluorination: Morphological Manipulation Prompts Charge Separation and Reduces Carrier Recombination in Allâ€&mallâ€Molecule Photovoltaics. Solar Rrl, 2020, 4, 1900528.	3.1	27
22	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	11.7	137
23	Surface Sulfuration of NiO Boosts the Performance of Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000270.	3.1	31
24	Thickâ€Film Low Drivingâ€Force Indoor Light Harvesters. Solar Rrl, 2020, 4, 2000291.	3.1	24
25	Passivation engineering for hysteresis-free mixed perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 215, 110648.	3.0	21
26	Highlyâ€Transparent and Trueâ€Colored Semitransparent Indoor Photovoltaic Cells. Small Methods, 2020, 4, 2000136.	4.6	28
27	High-Efficiency Indoor Organic Photovoltaics with a Band-Aligned Interlayer. Joule, 2020, 4, 1486-1500.	11.7	169
28	A facile and robust approach to prepare fluorinated polymer dielectrics for probing the intrinsic transport behavior of organic semiconductors. Materials Advances, 2020, 1, 891-898.	2.6	9
29	Recent progress of all-polymer solar cells – From chemical structure and device physics to photovoltaic performance. Materials Science and Engineering Reports, 2020, 140, 100542.	14.8	75
30	Understanding the Interplay of Binary Organic Spacer in Ruddlesden–Popper Perovskites toward Efficient and Stable Solar Cells. Advanced Functional Materials, 2020, 30, 1907759.	7.8	31
31	A disorder-free conformation boosts phonon and charge transfer in an electron-deficient-core-based non-fullerene acceptor. Journal of Materials Chemistry A, 2020, 8, 8566-8574.	5.2	37
32	Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors. Nano Energy, 2019, 64, 103950.	8.2	31
33	Resolving the Mechanisms of Photocurrent Improvement in Ternary Organic Solar Cells. Journal of Physical Chemistry C, 2019, 123, 18294-18302.	1.5	21
34	Enhanced Electron Transport and Heat Transfer Boost Light Stability of Ternary Organic Photovoltaic Cells Incorporating Nonâ€Fullerene Small Molecule and Polymer Acceptors. Advanced Electronic Materials, 2019, 5, 1900497.	2.6	37
35	Donor Polymer Can Assist Electron Transport in Bulk Heterojunction Blends with Small Energetic Offsets. Advanced Materials, 2019, 31, e1903998.	11.1	49
36	Highly Crystalline Near-Infrared Acceptor Enabling Simultaneous Efficiency and Photostability Boosting in High-Performance Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 48095-48102.	4.0	30

#	Article	IF	CITATIONS
37	Tuning electronic properties of molecular acceptor-π-porphyrin-π-acceptor donors via π-linkage structural engineering. Organic Electronics, 2019, 73, 146-151.	1.4	8
38	Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells. Nano Energy, 2019, 61, 496-504.	8.2	92
39	Design of wide-bandgap polymers with deeper ionization potential enables efficient ternary non-fullerene polymer solar cells with 13% efficiency. Journal of Materials Chemistry A, 2019, 7, 14153-14162.	5.2	27
40	Fused Benzothiadiazole: A Building Block for nâ€Type Organic Acceptor to Achieve Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.	11.1	297
41	Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Organic Electronics, 2019, 65, 156-161.	1.4	23
42	Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 36-44.	3.0	31
43	Balanced Electric Field Dependent Mobilities: A Key to Access High Fill Factors in Organic Bulk Heterojunction Solar Cells. Solar Rrl, 2018, 2, 1700239.	3.1	49
44	Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells. Nano Energy, 2018, 46, 81-90.	8.2	129
45	Versatility of Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and High Stability. Advanced Materials, 2018, 30, e1706975.	11.1	95
46	Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20%. Journal of Materials Chemistry A, 2018, 6, 8579-8585.	5.2	124
47	Stable and Efficient Organoâ€Metal Halide Hybrid Perovskite Solar Cells via Ï€â€Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Advanced Materials, 2018, 30, e1706126.	11.1	241
48	A Cryogenic Process for Antisolventâ€Free Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2018, 30, e1804402.	11.1	47
49	On the understanding of energetic disorder, charge recombination and voltage losses in all-polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 7855-7863.	2.7	26
50	Molecular design enabled reduction of interface trap density affords highly efficient and stable perovskite solar cells with over 83% fill factor. Nano Energy, 2018, 52, 300-306.	8.2	112
51	High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite film prepared by vacuum-assisted thermal annealing. Journal of Materials Chemistry A, 2018, 6, 16347-16354.	5.2	44
52	Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. Journal of Materials Chemistry C, 2018, 6, 9111-9118.	2.7	67
53	Using Ultralow Dosages of Electron Acceptor to Reveal the Early Stage Donor–Acceptor Electronic Interactions in Bulk Heterojunction Blends. Advanced Energy Materials, 2017, 7, 1602360.	10.2	64
54	Naphthalene diimide-difluorobenzene-based polymer acceptors for all-polymer solar cells. Chemical Communications, 2017, 53, 3249-3252.	2.2	27

#	Article	IF	CITATIONS
55	Thickâ€Film Highâ€Performance Bulkâ€Heterojunction Solar Cells Retaining 90% PCEs of the Optimized Thin Film Cells. Advanced Electronic Materials, 2017, 3, 1700007.	2.6	33
56	Pinning Down the Anomalous Light Soaking Effect toward High-Performance and Fast-Response Perovskite Solar Cells: The Ion-Migration-Induced Charge Accumulation. Journal of Physical Chemistry Letters, 2017, 8, 5069-5076.	2.1	60
57	Boosting the photovoltaic thermal stability of fullerene bulk heterojunction solar cells through charge transfer interactions. Journal of Materials Chemistry A, 2017, 5, 23662-23670.	5.2	15
58	Investigation of high performance TiO ₂ nanorod array perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15970-15980.	5.2	64
59	Bulk-heterojunction solar cells with enriched polymer contents. Organic Electronics, 2017, 40, 1-7.	1.4	18
60	Probing Bulk Transport, Interfacial Disorders, and Molecular Orientations of Amorphous Semiconductors in a Thinâ€Film Transistor Configuration. Advanced Electronic Materials, 2016, 2, 1500273.	2.6	6
61	The detrimental effect of excess mobile ions in planar CH ₃ NH ₃ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12748-12755.	5.2	55
62	Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 32805-32814.	4.0	76
63	Organic soluble indigoids derived from 3-hydroxybenzaldehyde for N-type organic field-effect transistor (OFET) applications. Organic Electronics, 2016, 32, 258-266.	1.4	12
64	Impact of Solvent Additive on Carrier Transport in Polymer:Fullerene Bulk Heterojunction Photovoltaic Cells. Advanced Materials Interfaces, 2015, 2, 1500166.	1.9	46
65	Effects of oxyten annealing on the performance of perovskite solar cells. , 2015, , .		0
66	Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI ₂ /CH ₃ NH ₃ I multilayers. Journal of Materials Chemistry A, 2015, 3, 9223-9231.	5.2	82
67	lsobenzofulvene-fullerene mono-adducts for organic photovoltaic applications. Journal of Materials Chemistry C, 2015, 3, 977-980.	2.7	11
68	Polyfluorene Derivatives are Highâ€Performance Organic Holeâ€Transporting Materials for Inorganicâ^'Organic Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2014, 24, 7357-7365.	7.8	172
69	Batchâ€ŧoâ€Batch Variation of Polymeric Photovoltaic Materials: its Origin and Impacts on Charge Carrier Transport and Device Performances. Advanced Energy Materials, 2014, 4, 1400768.	10.2	72
70	Achieving time-of-flight mobilities for amorphous organic semiconductors in a thin film transistor configuration. Organic Electronics, 2013, 14, 1351-1358.	1.4	27
71	Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer. Advanced Functional Materials, 2012, 22, 3261-3266.	7.8	73
72	Role of electron blocking and trapping layers in transport characterization of a photovoltaic polymer poly(3-hexylthiophene). Organic Electronics, 2012, 13, 541-544.	1.4	17

#	Article	IF	CITATIONS
73	Charge injection and transport studies of poly(2,7-carbazole) copolymer PCDTBT and their relationship to solar cell performance. Organic Electronics, 2012, 13, 850-855.	1.4	41
74	Using transistor technique to study the effects of transition metal oxide dopants on organic charge transporters. Organic Electronics, 2011, 12, 1454-1458.	1.4	15
75	Role of air exposure in the improvement of injection efficiency of transition metal oxide/organic contact. Organic Electronics, 2010, 11, 89-94.	1.4	40
76	Can an organic phosphorescent dye act as a charge transporter?. Organic Electronics, 2010, 11, 872-875.	1.4	17
77	High temperature carrier mobility as an intrinsic transport parameter of an organic semiconductor. Organic Electronics, 2009, 10, 661-665.	1.4	11
78	Pâ€⊋20: NPBâ€Based RGB Single‣ayer OLEDs. Digest of Technical Papers SID International Symposium, 2008, 39, 2032-2035.	0.1	0
79	Novel fluorine-containing X-branched oligophenylenes: structure–hole blocking property relationships. Journal of Materials Chemistry, 2006, 16, 765-772.	6.7	10
80	Electrochemical degradation of 4-chlorophenol at nickel–antimony doped tin oxide electrode. Chemosphere, 2006, 65, 1087-1093.	4.2	94
81	Synthesis of 2-phenylquinoline-based ambipolar molecules containing multiple 1,3,4-oxadiazole spacer groups. Synthetic Metals, 2006, 156, 270-275.	2.1	17
82	The role of charge-transfer integral in determining and engineering the carrier mobilities of 9,10-di(2-naphthyl)anthracene compounds. Chemical Physics Letters, 2006, 422, 354-357.	1.2	41
83	PEDOT:PSS polymeric conducting anode for admittance spectroscopy. Organic Electronics, 2006, 7, 474-479.	1.4	46
84	Heterojunction OLEDs fabricated by Eu ternary complexes with conducting secondary ligands. Optical Materials, 2006, 28, 709-713.	1.7	13
85	Oxadiazole-Triphenylamine derivatives for OLEDs. , 2005, , .		0
86	High-Mobility Hole-Transporting Polymers for Electroluminescence Applications. Japanese Journal of Applied Physics, 2005, 44, 543-545.	0.8	21
87	Synthesis and electroluminescence of thiophene-based bipolar small molecules with different arylamine moieties. Synthetic Metals, 2005, 155, 116-124.	2.1	52
88	Charge trapping and scattering by extrinsic gas dopants in tris(8-hydroxyquinoline) aluminum (Alq3). Materials Research Society Symposia Proceedings, 2004, 814, 42.	0.1	0
89	Theoretical investigation of a blue hydroxyquinaldine-based aluminum(III) complex. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 321, 194-198.	0.9	6
90	Effects of tertiary butyl substitution on the charge transporting properties of rubrene-based films. Chemical Physics, 2004, 298, 119-123.	0.9	60

#	Article	IF	CITATIONS
91	Study of lithium fluoride/tris(8-hydroxyquinolino)-aluminum interfacial chemistry using XPS and ToF-SIMS. Applied Surface Science, 2004, 228, 373-377.	3.1	18
92	Transport and luminescence in naphthyl phenylamine model compounds. Synthetic Metals, 2004, 147, 199-203.	2.1	24
93	Active textured metallic microcavity. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 446-448.	1.3	0
94	Charge motion and trapping in molecularly doped hole transporters. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	0
95	Effects of additives in polymer thick film-organic light emitting diodes (PTF-OLED). Displays, 2002, 23, 171-175.	2.0	5
96	Hole transports in molecularly doped triphenylamine derivative. Chemical Physics Letters, 2002, 353, 407-413.	1.2	117
97	Angular-dependent photoemission studies of indium tin oxide surfaces. Applied Physics A: Materials Science and Processing, 2001, 72, 361-365.	1.1	50
98	Angle dependent X-ray photoemission study on UV-ozone treatments of indium tin oxide. Applied Surface Science, 2001, 177, 158-164.	3.1	72
99	Organic polymer thick film light emitting diodes (PTF-OLED). Displays, 2000, 21, 199-201.	2.0	17
100	Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics A: Materials Science and Processing, 1999, 68, 447-450.	1.1	182
101	Photothermal deflection spectroscopy and transmission measurements of a-C:H films. Journal of Non-Crystalline Solids, 1999, 254, 151-155.	1.5	4
102	NO2 adsorption on graphite at 90 K. Chemical Physics Letters, 1990, 172, 125-130.	1.2	41
103	Photodesorption of NO on Ag(111) at 80 K. Vacuum, 1990, 41, 284-286.	1.6	14
104	Polymeric organic light emitting diodes (OLED). , 0, , .		0
105	Active medium inside photonic band structured microcavity. , 0, , .		0
106	Heat Transfer Enhancement of n-Type Organic Semiconductors by an Insulator Blend Approach. ACS Applied Materials & Interfaces, 0, , .	4.0	1