List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7485109/publications.pdf Version: 2024-02-01

ΔΝΑ ΒΑΗΑΜΟΝΟΕ

#	Article	IF	CITATIONS
1	Zirconium-based Metal-Organic Frameworks for highly efficient solar light-driven photoelectrocatalytic disinfection. Separation and Purification Technology, 2022, 285, 120351.	7.9	5
2	Eco-friendly mechanochemical synthesis of titania-graphene nanocomposites for pesticide photodegradation. Separation and Purification Technology, 2022, 289, 120638.	7.9	8
3	Strong effect of light scattering by distribution of TiO2 particle aggregates on photocatalytic efficiency in aqueous suspensions. Chemical Engineering Journal, 2021, 403, 126186.	12.7	34
4	Lead-free low-melting-point glass as bonding agent for TiO2 nanoparticles. Ceramics International, 2021, 47, 6114-6120.	4.8	5
5	Methodologies of synthesis of titania and titania-graphene photocatalysts. , 2021, , 83-94.		0
6	Performance of Iron-Functionalized Activated Carbon Catalysts (Fe/AC-f) on CWPO Wastewater Treatment. Catalysts, 2021, 11, 337.	3.5	4
7	High performance of electrosprayed graphene oxide/TiO2/Ce-TiO2 photoanodes for photoelectrocatalytic inactivation of S. aureus. Electrochimica Acta, 2021, 395, 139203.	5.2	7
8	Impact of water matrix and oxidant agent on the solar assisted photodegradation of a complex mix of pesticides over titania-reduced graphene oxide nanocomposites. Catalysis Today, 2021, 380, 114-124.	4.4	10
9	Critical review on the use of photocatalysis and photoelectrocatalysis to create antimicrobial surfaces. Current Opinion in Chemical Engineering, 2021, 34, 100762.	7.8	8
10	Photocatalytic Degradation of Alachlor over Titania-Reduced Graphene Oxide Nanocomposite: Intrinsic Kinetic Model and Reaction Pathways. Industrial & Engineering Chemistry Research, 2021, 60, 18907-18917.	3.7	2
11	TiO2-reduced graphene oxide nanocomposites: Microsecond charge carrier kinetics. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112112.	3.9	9
12	Biocide mechanism of highly efficient and stable antimicrobial surfaces based on zinc oxide–reduced graphene oxide photocatalytic coatings. Journal of Materials Chemistry B, 2020, 8, 8294-8304.	5.8	25
13	Assessment of an intrinsic kinetic model for TiO ₂ –formic acid photodegradation using LEDs as a radiation source. Catalysis Science and Technology, 2020, 10, 6198-6211.	4.1	3
14	Role of surrounding crystallization media in TiO2 polymorphs coexistence and the effect on AOPs performance. Molecular Catalysis, 2020, 493, 111059.	2.0	4
15	Photo-mechanism of phenolic pollutants in natural water: Effect of salts. Separation and Purification Technology, 2020, , 116868.	7.9	4
16	Solar photocatalytic degradation of pesticides over TiO2-rGO nanocomposites at pilot plant scale. Science of the Total Environment, 2020, 737, 140286.	8.0	56
17	TiO2-rGO photocatalytic degradation of an emerging pollutant: kinetic modelling and determination of intrinsic kinetic parameters. Journal of Environmental Chemical Engineering, 2019, 7, 103406.	6.7	17
18	Influence of TIO2-rGO optical properties on the photocatalytic activity and efficiency to photodegrade an emerging pollutant. Applied Catalysis B: Environmental, 2019, 246, 1-11.	20.2	60

#	Article	IF	CITATIONS
19	An approach on the comparative behavior of chloro / nitro substituted phenols photocatalytic degradation in water. Journal of Environmental Chemical Engineering, 2019, 7, 103051.	6.7	18
20	Multifunctional photocatalytic coatings for construction materials. , 2019, , 557-589.		4
21	Antimicrobial surfaces with self-cleaning properties functionalized by photocatalytic ZnO electrosprayed coatings. Journal of Hazardous Materials, 2019, 369, 665-673.	12.4	54
22	Optimizing P25-rGO composites for pesticides degradation: Elucidation of photo-mechanism. Catalysis Today, 2019, 328, 172-177.	4.4	15
23	Nature and photoreactivity of TiO2-rGO nanocomposites in aqueous suspensions under UV-A irradiation. Applied Catalysis B: Environmental, 2019, 241, 375-384.	20.2	41
24	Analysis of photoefficiency in TiO2 aqueous suspensions: Effect of titania hydrodynamic particle size and catalyst loading on their optical properties. Applied Catalysis B: Environmental, 2018, 221, 1-8.	20.2	49
25	Antibacterial surfaces prepared by electrospray coating of photocatalytic nanoparticles. Chemical Engineering Journal, 2018, 334, 1108-1118.	12.7	42
26	Elucidation of the photocatalytic-mechanism of phenolic compounds. Journal of Environmental Chemical Engineering, 2018, 6, 5712-5719.	6.7	8
27	Bare TiO 2 and graphene oxide TiO 2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science, 2017, 416, 1013-1021.	6.1	161
28	Modified ilmenite as catalyst for CWPO-Photoassisted process under LED light. Chemical Engineering Journal, 2017, 318, 89-94.	12.7	31
29	Environmental applications of titania-graphene photocatalysts. Catalysis Today, 2017, 285, 13-28.	4.4	95
30	Photocatalyst performance in wastewater treatment applications: Towards the role of TiO2 properties. Molecular Catalysis, 2017, 434, 167-174.	2.0	44
31	Sulfonamides photoassisted oxidation treatments catalyzed by ilmenite. Chemosphere, 2017, 180, 523-530.	8.2	29
32	Solar-assisted photodegradation of isoproturon over easily recoverable titania catalysts. Environmental Science and Pollution Research, 2017, 24, 7821-7828.	5.3	3
33	Treatment of hospital wastewater through the CWPO-Photoassisted process catalyzed by ilmenite. Journal of Environmental Chemical Engineering, 2017, 5, 4337-4343.	6.7	35
34	Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds. Journal of Environmental Chemical Engineering, 2017, 5, 4612-4620.	6.7	21
35	Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. Journal of Hazardous Materials, 2017, 340, 160-170.	12.4	100
36	Influence of TiO2 optical parameters in a slurry photocatalytic reactor: Kinetic modelling. Applied Catalysis B: Environmental, 2017, 200, 164-173.	20.2	52

#	Article	IF	CITATIONS
37	Study of application of titania catalysts on solar photocatalysis: Influence of type of pollutants and water matrices. Chemical Engineering Journal, 2016, 291, 64-73.	12.7	59
38	Ilmenite (FeTiO 3) as low cost catalyst for advanced oxidation processes. Journal of Environmental Chemical Engineering, 2016, 4, 542-548.	6.7	72
39	Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis. Catalysis Today, 2016, 266, 168-174.	4.4	23
40	On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process. Applied Catalysis B: Environmental, 2016, 181, 249-259.	20.2	53
41	TiO2 and TiO2–SiO2 coated cement: Comparison of mechanic and photocatalytic properties. Applied Catalysis B: Environmental, 2015, 178, 155-164.	20.2	88
42	Photocatalytic degradation of phenol and isoproturon: Effect of adding an activated carbon to titania catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 287, 8-18.	3.9	35
43	Effect of water composition on the photocatalytic removal of pesticides with different TiO2 catalysts. Environmental Science and Pollution Research, 2014, 21, 12233-12240.	5.3	25
44	Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts. Applied Catalysis B: Environmental, 2014, 144, 269-276.	20.2	34
45	Photogenerated Defects in Shape-Controlled TiO ₂ Anatase Nanocrystals: A Probe To Evaluate the Role of Crystal Facets in Photocatalytic Processes. Journal of the American Chemical Society, 2011, 133, 17652-17661.	13.7	319
46	Solar light assisted photodegradation of phenol with hydrogen peroxide over iron-doped titania catalysts: Role of iron leached/readsorbed species. Applied Catalysis B: Environmental, 2011, 108-109, 168-176.	20.2	17
47	Improved mineralization by combined advanced oxidation processes. Chemical Engineering Journal, 2011, 174, 134-142.	12.7	37
48	Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide. Applied Catalysis A: General, 2011, 402, 146-155.	4.3	122
49	Optimization of H2O2 use during the photocatalytic degradation of ethidium bromide with TiO2 and iron-doped TiO2 catalysts. Applied Catalysis B: Environmental, 2011, 102, 85-93.	20.2	30
50	Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Water Science and Technology, 2010, 61, 2769-2778.	2.5	20
51	Phenol photodegradation with oxygen and hydrogen peroxide over TiO2 and Fe-doped TiO2. Catalysis Today, 2009, 143, 247-252.	4.4	39
52	Optimizing calcination temperature of Fe/activated carbon catalysts for CWPO. Catalysis Today, 2009, 143, 341-346.	4.4	66
53	Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface. Applied Catalysis B: Environmental, 2009, 86, 69-77.	20.2	149
54	New insights on solar photocatalytic degradation of phenol over Fe-TiO2 catalysts: Photo-complex mechanism of iron lixiviates. Applied Catalysis B: Environmental, 2009, 93, 96-105.	20.2	20

#	Article	IF	CITATIONS
55	Role of the Activated Carbon Surface on Catalytic Wet Peroxide Oxidation. Industrial & Engineering Chemistry Research, 2008, 47, 8166-8174.	3.7	61
56	Photocatalytic degradation of ethidium bromide over titania in aqueous solutions. Applied Catalysis B: Environmental, 2007, 76, 395-402.	20.2	27
57	Solar light assisted photodegradation of ethidium bromide over titania-based catalysts. Catalysis Today, 2007, 129, 79-85.	4.4	24
58	Influence of sulphate doping on Pd/zirconia based catalysts for the selective catalytic reduction of nitrogen oxides with methane. Applied Catalysis B: Environmental, 2007, 71, 254-261.	20.2	23
59	Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Applied Catalysis B: Environmental, 2007, 72, 11-17.	20.2	254
60	Selective catalytic reduction of NOx by methane in excess oxygen over Rh based aluminium pillared clays. Applied Catalysis B: Environmental, 2006, 64, 161-170.	20.2	22
61	PILC-based monolithic catalysts for the selective catalytic reduction of nitrogen oxides by methane in oxygen excess. Catalysis Today, 2005, 107-108, 192-199.	4.4	8
62	High surface area monoliths based on pillared clay materials as carriers for catalytic processes. Applied Clay Science, 2005, 29, 125-136.	5.2	23
63	Influence of zirconia raw materials on the development of DeNOx monolithic catalysts. Applied Catalysis B: Environmental, 2003, 44, 333-346.	20.2	12
64	Pillared clay and zirconia-based monolithic catalysts for selective catalytic reduction of nitric oxide by methane. Catalysis Today, 2001, 69, 233-239.	4.4	37
65	Incorporated Ternary Monolithic Catalysts for Nitric Oxide Removal. Reaction Kinetics and Catalysis Letters, 2000, 69, 129-136.	0.6	0
66	Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts. Catalysis Today, 1999, 54, 369-377.	4.4	53
67	Solarized photoreactors for degradation of chlorinated organics in air. European Physical Journal Special Topics, 1999, 09, Pr3-271-Pr3-276.	0.2	2
68	Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts. Applied Catalysis B: Environmental, 1998, 17, 75-88.	20.2	62
69	Titania based platinum monolithic catalysts for lean-burn DeNOx process. Applied Catalysis B: Environmental, 1998, 19, 1-7.	20.2	6
70	Two-bed catalytic system for NOx/SOx removal. Catalysis Today, 1998, 42, 85-92.	4.4	14
71	Mass transfer influences on the design of selective catalytic reduction (SCR) monolithic reactors. Chemical Engineering and Processing: Process Intensification, 1998, 37, 117-124.	3.6	7
72	An Experimental and Theoretical Investigation of the Behavior of a Monolithic Tiâ^'Vâ^'Wâ^'Sepiolite Catalyst in the Reduction of NOxwith NH3. Industrial & Engineering Chemistry Research, 1996, 35, 2516-2521.	3.7	25

#	Article	IF	CITATIONS
73	Influence of the process parameters on the extrusion of ceramic catalysts Studies in Surface Science and Catalysis, 1996, 101, 1359-1368.	1.5	7
74	Measurement of the effective diffusivity for a vanadia-tungsta-titania/sepiolite catalyst for SCR of NOx. Applied Catalysis B: Environmental, 1996, 8, 299-314.	20.2	16
75	Influence of the operation time on the performance of a new SCR monolithic catalyst. Catalysis Today, 1996, 27, 9-13.	4.4	10
76	Photocatalytic destruction of toluene and xylene at gas phase on a titania based monolithic catalyst. Catalysis Today, 1996, 29, 437-442.	4.4	61
77	The performance of a new monolithic SCR catalyst in a life test with real exhaust gases. Effect on the textural nature. Coal Science and Technology, 1995, , 1807-1810.	0.0	0
78	The use of sepiolite in the preparation of titania monoliths for the manufacture of industrial catalysts. Studies in Surface Science and Catalysis, 1995, 91, 755-764.	1.5	13
79	Characterization of alumina:sepiolite monoliths for use as industrial catalyst supports. Journal of Materials Science, 1994, 29, 5927-5933.	3.7	13
80	Kinetic study of the selective reduction of nitric oxide over vanadia—tungsta—titania/sepiolite catalyst. Applied Catalysis B: Environmental, 1994, 5, 117-131.	20.2	44
81	Influence of the binder on the properties of catalysts based on titanium-vanadium oxides. Journal of Materials Science, 1993, 28, 4113-4118.	3.7	31
82	Catalyst for NOx removal in nitric-acid plant gaseous effluents. Atmospheric Environment Part A General Topics, 1993, 27, 443-447.	1.3	8
83	Influence of phosphorus in vanadium-containing catalysts for NOx removal. Applied Catalysis, 1989, 55, 151-164.	0.8	37