
Sijun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7485058/publications.pdf Version: 2024-02-01

SHUMLIN

#	Article	IF	CITATIONS
1	Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Applied Materials & Interfaces, 2017, 9, 26429-26437.	8.0	374
2	Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. International Journal of Bioprinting, 2016, 2, .	3.4	165
3	Recoverable and Self-Healing Double Network Hydrogel Based on κ-Carrageenan. ACS Applied Materials & Interfaces, 2016, 8, 29749-29758.	8.0	143
4	Enhanced stability and mechanical strength of sodium alginate composite films. Carbohydrate Polymers, 2017, 160, 62-70.	10.2	124
5	A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide. ACS Applied Materials & Interfaces, 2017, 9, 41473-41481.	8.0	103
6	Rheological Properties and Scaling Laws of κ-Carrageenan in Aqueous Solution. Macromolecules, 2015, 48, 7649-7657.	4.8	87
7	Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane. Journal of Membrane Science, 2011, 379, 268-278.	8.2	83
8	Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. ACS Applied Materials & Interfaces, 2018, 10, 11164-11174.	8.0	82
9	Thermoreversible gelation and scaling behavior of Ca2+-induced κ-carrageenan hydrogels. Food Hydrocolloids, 2016, 61, 793-800.	10.7	72
10	Solvents effects in the formation and viscoelasticity of DBS organogels. Soft Matter, 2013, 9, 864-874.	2.7	64
11	Scaling law and microstructure of alginate hydrogel. Carbohydrate Polymers, 2016, 135, 101-109.	10.2	54
12	Thermoreversible gelation and viscoelasticity of κ-carrageenan hydrogels. Journal of Rheology, 2016, 60, 203-214.	2.6	53
13	Highly Stretchable and Self-Healing Strain Sensor Based on Gellan Gum Hybrid Hydrogel for Human Motion Monitoring. ACS Applied Polymer Materials, 2020, 2, 1325-1334.	4.4	47
14	Multiple Phase Transition and Scaling Law for Poly(ethylene oxide)–Poly(propylene) Tj ETQq0 0 0 rgBT /Overloci Interfaces, 2015, 7, 2688-2697.	₹ 10 Tf 50 8.0	227 Td (oxio 36
15	Thermoreversible gelation and scaling laws for graphene oxide-filled κ-carrageenan hydrogels. European Polymer Journal, 2016, 79, 150-162.	5.4	29
16	Simultaneously improved strength and toughness in κ-carrageenan/polyacrylamide double network hydrogel via synergistic interaction. Carbohydrate Polymers, 2020, 230, 115596.	10.2	27
17	Synthesis of hierarchically structured ZnO nanomaterials via a supercritical assisted solvothermal process. Chemical Communications, 2014, 50, 930-932.	4.1	23
18	Role of PPO–PEO–PPO triblock copolymers in phase transitions of a PEO–PPO–PEO triblock copolymer in aqueous solution. European Polymer Journal, 2015, 71, 423-439.	5.4	21

Sijun Liu

#	Article	IF	CITATIONS
19	Functionalized Graphene Oxideâ€Reinforced Chitosan Hydrogel as Biomimetic Dressing for Wound Healing. Macromolecular Bioscience, 2021, 21, e2000432.	4.1	21
20	Bioinspired Anisotropic Chitosan Hybrid Hydrogel. ACS Applied Bio Materials, 2020, 3, 6959-6966.	4.6	19
21	Molecular Self-Assembly Assisted Liquid–Liquid Phase Separation in Ultrahigh Molecular Weight Polyethylene/Liquid Paraffin/Dibenzylidene Sorbitol Ternary Blends. Macromolecules, 2013, 46, 6309-6318.	4.8	18
22	Molecular interactions between PEO–PPO–PEO and PPO–PEO–PPO triblock copolymers in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 485-497.	4.7	18
23	Unique gelation of chitosan in an alkali/urea aqueous solution. Polymer, 2018, 141, 124-131.	3.8	18
24	Tuning the water permeability of ultra-high molecular weight polyethylene microporous membrane by molecular self-assembly and flow field. Polymer, 2014, 55, 2113-2124.	3.8	17
25	Physically cross-linked gellan gum/hydrophobically associated polyacrylamide double network hydrogel for cartilage repair. European Polymer Journal, 2022, 167, 111074.	5.4	16
26	Molecular Dynamics of Azobenzene Polymer with Photoreversible Glass Transition. Macromolecules, 2022, 55, 3711-3722.	4.8	13
27	A Flexible, Transparent, Ultralow Detection Limit Capacitive Pressure Sensor. Advanced Materials Interfaces, 2022, 9, .	3.7	13
28	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465.		12
29	Effect of functionalized graphene oxide on gelation and scaling law of alginate in aqueous solution. European Polymer Journal, 2017, 95, 462-473.	5.4	9
30	A biomimetic skin-like sensor with multiple sensory capabilities based on hybrid ionogel. Sensors and Actuators A: Physical, 2021, 330, 112855.	4.1	8
31	Crystallization and microporous membrane properties of ultrahigh molecular weight polyethylene with dibenzylidene sorbitol. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
32	Selfâ€Contained Focusâ€Tunable Lenses Based on Transparent and Conductive Gels. Macromolecular Materials and Engineering, 2020, 305, 2000393.	3.6	6
33	In Situ Formation of 3D Conductive and Cell‣aden Graphene Hydrogel for Electrically Regulating Cellular Behavior. Macromolecular Bioscience, 2021, 21, e2000374.	4.1	6
34	Symmetry breakdown in the sol-gel transition of a Guar gum transient physical network. Carbohydrate Polymers, 2021, 258, 117689.	10.2	5