Joan W Berman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CCL2/Monocyte Chemoattractant Protein-1 Mediates Enhanced Transmigration of Human Immunodeficiency Virus (HIV)-Infected Leukocytes across the Blood-Brain Barrier: A Potential Mechanism of HIV-CNS Invasion and NeuroAIDS. Journal of Neuroscience, 2006, 26, 1098-1106.	1.7	358
2	MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. Journal of Neuroimmunology, 1998, 86, 20-29.	1.1	342
3	Human Immunodeficiency Virus Infection of Human Astrocytes Disrupts Blood-Brain Barrier Integrity by a Gap Junction-Dependent Mechanism. Journal of Neuroscience, 2011, 31, 9456-9465.	1.7	214
4	Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Science Signaling, 2017, 10, .	1.6	199
5	HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3438-3443.	3.3	193
6	TNF-α Plus IFN-γ Induce Connexin43 Expression and Formation of Gap Junctions Between Human Monocytes/Macrophages That Enhance Physiological Responses. Journal of Immunology, 2003, 170, 1320-1328.	0.4	187
7	Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. Journal of Leukocyte Biology, 2012, 91, 401-415.	1.5	173
8	Chemokine and Chemokine-Receptor Expression in Human Glial Elements. American Journal of Pathology, 2000, 156, 1441-1453.	1.9	164
9	A role for CXCL12 (SDF-1α) in the pathogenesis of multiple sclerosis: Regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. Journal of Neuroimmunology, 2006, 177, 27-39.	1.1	146
10	Mechanisms of HIV Entry into the CNS: Increased Sensitivity of HIV Infected CD14+CD16+ Monocytes to CCL2 and Key Roles of CCR2, JAM-A, and ALCAM in Diapedesis. PLoS ONE, 2013, 8, e69270.	1.1	140
11	Monocytes Mediate HIV Neuropathogenesis: Mechanisms that Contribute to HIV Associated Neurocognitive Disorders. Current HIV Research, 2014, 12, 85-96.	0.2	122
12	Chemokine-dependent mechanisms of leukocyte trafficking across a model of the blood–brain barrier. Methods, 2003, 29, 351-361.	1.9	119
13	Gap Junctions Mediate Human Immunodeficiency Virus-Bystander Killing in Astrocytes. Journal of Neuroscience, 2007, 27, 12844-12850.	1.7	118
14	Human Immunodeficiency Virus (HIV) Infection of Human Macrophages Is Increased by Dopamine. American Journal of Pathology, 2009, 175, 1148-1159.	1.9	115
15	The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System. Journal of NeuroImmune Pharmacology, 2012, 7, 499-518.	2.1	110
16	Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood–brain barrier and infection by HIV: Implications for NeuroAIDS. Cellular Immunology, 2011, 267, 109-123.	1.4	102
17	Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat. Journal of NeuroVirology, 2004, 10, 86-97.	1.0	98
18	CCL2 disrupts the adherens junction: implications for neuroinflammation. Laboratory Investigation, 2012, 92, 1213-1233.	1.7	97

Joan W Berman

#	Article	IF	CITATIONS
19	Mechanisms of CNS Viral Seeding by HIV ⁺ CD14 ⁺ CD16 ⁺ Monocytes: Establishment and Reseeding of Viral Reservoirs Contributing to HIV-Associated Neurocognitive Disorders. MBio, 2017, 8, .	1.8	90
20	Purinergic Receptors Are Required for HIV-1 Infection of Primary Human Macrophages. Journal of Immunology, 2012, 188, 4488-4495.	0.4	86
21	Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. Journal of Neuroinflammation, 2012, 9, 203.	3.1	81
22	Neuroimmunity and the Blood–Brain Barrier: Molecular Regulation of Leukocyte Transmigration and Viral Entry into the Nervous System with a Focus on NeuroAIDS. Journal of NeuroImmune Pharmacology, 2006, 1, 160-181.	2.1	79
23	HIV-1 tat protein induces a migratory phenotype in human fetal microglia by a CCL2 (MCP-1)-dependent mechanism: Possible role in NeuroAIDS. Glia, 2005, 49, 501-510.	2.5	73
24	JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals. Journal of Leukocyte Biology, 2015, 97, 401-412.	1.5	72
25	Differential induction of chemokines in human microglia by type i and ii interferons. Glia, 2000, 29, 273-280.	2.5	67
26	lmmune complexes increase nitric oxide production by interferon-Î ³ -stimulated murine macrophage-like J774.16 cells. Journal of Leukocyte Biology, 1995, 57, 657-662.	1.5	64
27	Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages. PLoS ONE, 2014, 9, e108232.	1.1	63
28	CCR2 on CD14 ⁺ CD16 ⁺ monocytes is a biomarker of HIV-associated neurocognitive disorders. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e36.	3.1	61
29	Drug Induced Increases in CNS Dopamine Alter Monocyte, Macrophage and T Cell Functions: Implications for HAND. Journal of NeuroImmune Pharmacology, 2013, 8, 621-642.	2.1	60
30	Cytochrome <i>c</i> dysregulation induced by <scp>HIV</scp> infection of astrocytes results in bystander apoptosis of uninfected astrocytes by an <scp>IP</scp> ₃ and calciumâ€dependent mechanism. Journal of Neurochemistry, 2013, 127, 644-651.	2.1	56
31	Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis. PLoS ONE, 2015, 10, e0117450.	1.1	53
32	Leukocyte transmigration across the blood-brain barrier: perspectives on neuroAIDS. Frontiers in Bioscience - Landmark, 2010, 15, 478.	3.0	52
33	Cytokine-induced inflammation in the central nervous system revisited. Neurochemical Research, 1998, 23, 349-359.	1.6	47
34	Astrocyte expression of monocyte chemoattractant protein-1 is differentially regulated by transforming growth factor beta. Journal of Neuroimmunology, 1998, 91, 190-197.	1.1	47
35	Dopamine Increases CD14+CD16+ Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. Journal of NeuroImmune Pharmacology, 2017, 12, 353-370.	2.1	45
36	The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Research, 2019, 1724, 146426.	1.1	44

Joan W Berman

#	Article	IF	CITATIONS
37	PrPC, the Cellular Isoform of the Human Prion Protein, Is a Novel Biomarker of HIV-Associated Neurocognitive Impairment and Mediates Neuroinflammation. American Journal of Pathology, 2010, 177, 1848-1860.	1.9	43
38	HIV-tat alters Connexin43 expression and trafficking in human astrocytes: role in NeuroAIDS. Journal of Neuroinflammation, 2016, 13, 54.	3.1	43
39	The Effects of Opioids on HIV Neuropathogenesis. Frontiers in Immunology, 2019, 10, 2445.	2.2	42
40	Mechanisms of HIV-tat-Induced Phosphorylation of N-Methyl-d-Aspartate Receptor Subunit 2A in Human Primary Neurons. American Journal of Pathology, 2010, 176, 2819-2830.	1.9	40
41	CD40-CD40 ligand interactions in human microglia induce CXCL8 (interleukin-8) secretion by a mechanism dependent on activation of ERK1/2 and nuclear translocation of nuclear factor-κB (NFκB) and activator protein-1 (AP-1). Journal of Neuroscience Research, 2008, 86, 630-639.	1.3	39
42	Central Nervous System (CNS) Viral Seeding by Mature Monocytes and Potential Therapies To Reduce CNS Viral Reservoirs in the cART Era. MBio, 2021, 12, .	1.8	37
43	TGF-Beta Downmodulates Cytokine-Induced Monocyte Chemoattractant Protein (MCP)-1 Expression in Human Endothelial Cells. A Putative Role for TGF-Beta in the Modulation of TNF Receptor Expression. Endothelium: Journal of Endothelial Cell Research, 1999, 6, 291-302.	1.7	32
44	CCR2 on Peripheral Blood CD14+CD16+ Monocytes Correlates with Neuronal Damage, HIV-Associated Neurocognitive Disorders, and Peripheral HIV DNA: reseeding of CNS reservoirs?. Journal of NeuroImmune Pharmacology, 2019, 14, 120-133.	2.1	31
45	Buprenorphine Decreases the CCL2-Mediated Chemotactic Response of Monocytes. Journal of Immunology, 2015, 194, 3246-3258.	0.4	29
46	Lipid metabolites of the phospholipase A2 pathway and inflammatory cytokines are associated with brain volume in paediatric cerebral malaria. Malaria Journal, 2015, 14, 513.	0.8	28
47	Methamphetamine Increases the Proportion of SIV-Infected Microglia/Macrophages, Alters Metabolic Pathways, and Elevates Cell Death Pathways: A Single-Cell Analysis. Viruses, 2020, 12, 1297.	1.5	28
48	Differences in NMDA Receptor Expression During Human Development Determine the Response of Neurons to HIV-Tat-mediated Neurotoxicity. Neurotoxicity Research, 2011, 19, 138-148.	1.3	26
49	Frontline Science: CXCR7 mediates CD14+CD16+ monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAlDS. Journal of Leukocyte Biology, 2017, 102, 1173-1185.	1.5	24
50	Frontline Science: Buprenorphine decreases CCL2â€mediated migration of CD14+CD16+monocytes. Journal of Leukocyte Biology, 2018, 104, 1049-1059.	1.5	23
51	HIV-Tat regulates macrophage gene expression in the context of neuroAIDS. PLoS ONE, 2017, 12, e0179882.	1.1	22
52	The ordered array of perivascular macrophages is disrupted by IL-1-induced inflammation in the rabbit retina. , 1996, 17, 307-316.		21
53	The Role of Shed PrPc in the Neuropathogenesis of HIV Infection. Journal of Immunology, 2017, 199, 224-232.	0.4	20
54	HIV Nef and Antiretroviral Therapy Have an Inhibitory Effect on Autophagy in Human Astrocytes that May Contribute to HIV-Associated Neurocognitive Disorders. Cells, 2020, 9, 1426.	1.8	20

JOAN W BERMAN

#	Article	IF	CITATIONS
55	Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19. Frontiers in Immunology, 2021, 12, 665773.	2.2	20
56	The malaria toxin hemozoin induces apoptosis in human neurons and astrocytes: Potential role in the pathogenesis of cerebral malaria. Brain Research, 2019, 1720, 146317.	1.1	18
57	Interactions of Monocytes, HIV, and ART Identified by an Innovative scRNAseq Pipeline: Pathways to Reservoirs and HIV-Associated Comorbidities. MBio, 2020, 11, .	1.8	17
58	A fully human antibody to gp41 selectively eliminates HIV-infected cells that transmigrated across a model human blood brain barrier. Aids, 2016, 30, 563-572.	1.0	12
59	Higher circulating intermediate monocytes are associated with cognitive function in women with HIV. JCI Insight, 2021, 6, .	2.3	11
60	Opioids and Opioid Maintenance Therapies: Their Impact on Monocyte-Mediated HIV Neuropathogenesis. Current HIV Research, 2016, 14, 417-430.	0.2	11
61	Interleukin-1?-induced expression of monocyte chemotactic protein-1 in the rabbit retina: An in situ and immunohistochemical study. , 2000, 30, 279-289.		10
62	Protease Resistant Protein Cellular Isoform (PrPc) as a Biomarker: Clues into the Pathogenesis of HAND. Journal of NeuroImmune Pharmacology, 2013, 8, 1159-1166.	2.1	10
63	Treatment with buprenorphine prior to EcoHIV infection of mice prevents the development of neurocognitive impairment. Journal of Leukocyte Biology, 2021, 109, 675-681.	1.5	9
64	Inflammatory mediators reduce surface PrPc on human BMVEC resulting in decreased barrier integrity. Laboratory Investigation, 2018, 98, 1347-1359.	1.7	8
65	Improved Methods to Detect Low Levels of HIV Using Antibody-Based Technologies. Methods in Molecular Biology, 2016, 1354, 265-279.	0.4	7
66	Non-invasive nuclear imaging for localization of viral reservoirs. Nature Methods, 2015, 12, 399-400.	9.0	6
67	Combination of Antiretroviral Drugs and Radioimmunotherapy Specifically Kills Infected Cells from HIV-Infected Individuals. Frontiers in Medicine, 2016, 3, 41.	1.2	6
68	Comparison of various radioactive payloads for a human monoclonal antibody to glycoprotein 41 for elimination of HIV-infected cells. Nuclear Medicine and Biology, 2020, 82-83, 80-88.	0.3	6
69	HIV Increases the Inhibitory Impact of Morphine and Antiretrovirals on Autophagy in Primary Human Macrophages: Contributions to Neuropathogenesis. Cells, 2021, 10, 2183.	1.8	6
70	Novel flow cytometric analysis of the blood–brain barrier. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 897-907.	1.1	5
71	MR spectroscopy and diffusion imaging in people with human immunodeficiency virus : Relationships to clinical and immunologic findings . Journal of Neuroimaging, 2022, 32, 158-170.	1.0	2
72	Methamphetamine Dysregulates Macrophage Functions and Autophagy to Mediate HIV Neuropathogenesis. Biomedicines, 2022, 10, 1257.	1.4	2

#	Article	IF	CITATIONS
73	Prevention of endothelial cell cytokine induction by a Staphylococcus aureus lipoprotein. FEMS Immunology and Medical Microbiology, 2000, 28, 301-305.	2.7	1