## Nuno Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484754/publications.pdf Version: 2024-02-01



NUNO LOPES

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Resistance of steel cross-sections with local buckling at elevated temperatures. Journal of<br>Constructional Steel Research, 2015, 109, 101-114.                                                          | 3.9 | 70        |
| 2  | Statistical evaluation of the lateral–torsional buckling resistance of steel I-beams, Part 1: Variability of the Eurocode 3 resistance model. Journal of Constructional Steel Research, 2009, 65, 818-831. | 3.9 | 65        |
| 3  | Numerical investigation of the lateral–torsional buckling of beams with slender cross sections for the case of fire. Engineering Structures, 2016, 106, 410-421.                                           | 5.3 | 61        |
| 4  | Parametric analysis of the lateral–torsional buckling resistance of steel beams in case of fire. Fire<br>Safety Journal, 2007, 42, 416-424.                                                                | 3.1 | 56        |
| 5  | Effective width method to account for the local buckling of steel thin plates at elevated temperatures. Thin-Walled Structures, 2014, 84, 134-149.                                                         | 5.3 | 53        |
| 6  | Lateral-torsional buckling of unrestrained steel beams under fire conditions: improvement of EC3 proposal. Computers and Structures, 2004, 82, 1737-1744.                                                  | 4.4 | 37        |
| 7  | Lateral–torsional buckling of stainless steel I-beams in case of fire. Journal of Constructional Steel<br>Research, 2008, 64, 1302-1309.                                                                   | 3.9 | 31        |
| 8  | Numerical analysis of stainless steel beam-columns in case of fire. Fire Safety Journal, 2012, 50, 35-50.                                                                                                  | 3.1 | 31        |
| 9  | Numerical modelling of steel beam-columns in case of fire—comparisons with Eurocode 3. Fire Safety<br>Journal, 2004, 39, 23-39.                                                                            | 3.1 | 28        |
| 10 | The effect of non-uniform bending on the lateral stability of steel beams with slender cross-section at elevated temperatures. Engineering Structures, 2018, 163, 153-166.                                 | 5.3 | 27        |
| 11 | Axially Loaded Stainless Steel Columns in Case of Fire. Journal of Structural Fire Engineering, 2010, 1, 43-60.                                                                                            | 0.8 | 22        |
| 12 | Buckling analysis of braced and unbraced steel frames exposed to fire. Engineering Structures, 2013, 49, 541-559.                                                                                          | 5.3 | 19        |
| 13 | Critical temperatures of class 4 cross-sections. Journal of Constructional Steel Research, 2016, 121, 370-382.                                                                                             | 3.9 | 19        |
| 14 | Elastic critical moment of beams with sinusoidally corrugated webs. Journal of Constructional Steel<br>Research, 2017, 129, 185-194.                                                                       | 3.9 | 19        |
| 15 | Numerical study of steel plate girders under shear loading at elevated temperatures. Journal of<br>Constructional Steel Research, 2016, 117, 1-12.                                                         | 3.9 | 17        |
| 16 | Parametric study on austenitic stainless steel beam-columns with hollow sections under fire. Journal of Constructional Steel Research, 2019, 152, 274-283.                                                 | 3.9 | 16        |
| 17 | Numerical Modelling of Thin-Walled Stainless Steel Structural Elements in Case of Fire. Fire<br>Technology, 2010, 46, 91-108.                                                                              | 3.0 | 15        |
| 18 | Local buckling in laterally restrained steel beam-columns in case of fire. Journal of Constructional<br>Steel Research, 2016, 122, 543-556.                                                                | 3.9 | 15        |

NUNO LOPES

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | New proposals for the design of steel beam-columns in case of fire, including a new approach for the<br>lateral–torsional buckling. Computers and Structures, 2004, 82, 1463-1472.            | 4.4 | 14        |
| 20 | Ultimate shear strength of steel plate girders at normal and fire conditions. Thin-Walled Structures, 2019, 137, 318-330.                                                                     | 5.3 | 14        |
| 21 | Shear–bending interaction in steel plate girders subjected to elevated temperatures. Thin-Walled Structures, 2016, 104, 34-43.                                                                | 5.3 | 13        |
| 22 | A multi-objective analysis of a rural road network problem in the hilly regions of Nepal.<br>Transportation Research, Part A: Policy and Practice, 2014, 64, 43-53.                           | 4.2 | 11        |
| 23 | Class 4 stainless steel I beams subjected to fire. Thin-Walled Structures, 2014, 83, 137-146.                                                                                                 | 5.3 | 11        |
| 24 | Numerical modelling of steel plate girders at normal and elevated temperatures. Fire Safety Journal, 2016, 86, 1-15.                                                                          | 3.1 | 10        |
| 25 | Fire resistance of walls made of soilâ€cement and Kraftterra compressed earth blocks. Fire and Materials, 2013, 37, 547-562.                                                                  | 2.0 | 9         |
| 26 | Numerical study of fire resistance of stainless steel circular hollow section columns. Journal of Fire Sciences, 2020, 38, 156-172.                                                           | 2.0 | 9         |
| 27 | Design of steel plate girders subjected to shear buckling at ambient and elevated temperatures:<br>Contribution from the flanges. Engineering Structures, 2017, 152, 437-451.                 | 5.3 | 8         |
| 28 | Behaviour and resistance of cold-formed steel beams with lipped channel sections under fire conditions. Journal of Structural Fire Engineering, 2016, 7, 365-387.                             | 0.8 | 6         |
| 29 | Buckling Analysis of Steel Frames Exposed to Natural Fire Scenarios. Structures, 2017, 10, 76-88.                                                                                             | 3.6 | 6         |
| 30 | Covering-Based Rural Road Network Methodology for Hilly Regions of Developing Countries:<br>Application in Nepal. Journal of Transportation Engineering Part A: Systems, 2017, 143, 04016010. | 1.4 | 6         |
| 31 | Stability check of tapered steel beams in fire. Journal of Structural Fire Engineering, 2019, 10, 373-398.                                                                                    | 0.8 | 5         |
| 32 | The General Method for the fire design of slender I-section web-tapered columns. Thin-Walled Structures, 2020, 155, 106920.                                                                   | 5.3 | 5         |
| 33 | Fire behaviour and resistance of cold-formed steel beams with sigma cross-sections. Journal of Structural Fire Engineering, 2021, 12, 446-470.                                                | 0.8 | 5         |
| 34 | Stainless Steel Plate Girders Subjected to Shear Buckling at Normal and Elevated Temperatures. Fire Technology, 2017, 53, 815-843.                                                            | 3.0 | 4         |
| 35 | PARAMETRIC STUDY ON THE FIRE RESISTANCE OF STEEL COLUMNS WITH COLD-FORMED LIPPED CHANNEL SECTIONS. Applications of Structural Fire Engineering, 0, , .                                        | 0.3 | 3         |
| 36 | SHEAR BUCKLING EVALUATION IN STEEL PLATE GIRDERS WITH RIGID END POSTS SUBJECTED TO ELEVATED TEMPERATURES. Applications of Structural Fire Engineering, 0, , .                                 | 0.3 | 2         |

NUNO LOPES

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | General Method for the fire design of tapered steel columns: Outâ€ofâ€plane flexural buckling. Ce/Papers, 2019, 3, 677-682.                                                       | 0.3 | 2         |
| 38 | Design of stainless steel elliptical hollow sections columns in case of fire: parametric study.<br>Ce/Papers, 2021, 4, 1437-1446.                                                 | 0.3 | 2         |
| 39 | The General Method for the fire design of I-section web-tapered beams. Thin-Walled Structures, 2021, 169, 108377.                                                                 | 5.3 | 2         |
| 40 | Behaviour of limecrete under fire conditions. Fire and Materials, 2012, 36, 288-296.                                                                                              | 2.0 | 1         |
| 41 | 10.09: Critical temperatures of members with class 4 cross-section. Ce/Papers, 2017, 1, 2582-2591.                                                                                | 0.3 | 1         |
| 42 | Fire resistance of stainless steel slender elliptical hollow section beam-columns. Journal of<br>Structural Fire Engineering, 2021, ahead-of-print, .                             | 0.8 | 1         |
| 43 | Transversally loaded stainless steel beams under fire: Local/global behaviour, strength and design.<br>Journal of Constructional Steel Research, 2022, 189, 107080.               | 3.9 | 1         |
| 44 | The General Method for the fire design of I-section web-tapered beam–columns. Thin-Walled Structures, 2022, 174, 109108.                                                          | 5.3 | 1         |
| 45 | FIRE DESIGN OF STEEL BEAMS WITH SLENDER CROSS-SECTION, The influence of loading. Applications of Structural Fire Engineering, 0, , .                                              | 0.3 | Ο         |
| 46 | 10.27: Contribution from the flanges to the shear buckling resistance of steel plate girders at normal and elevated temperatures. Ce/Papers, 2017, 1, 2746-2755.                  | 0.3 | 0         |
| 47 | The General Method for the fire design of lâ€section webâ€ŧapered beams. Ce/Papers, 2021, 4, 1343-1352.                                                                           | 0.3 | Ο         |
| 48 | Fire design proposal for members with coldâ€ <del>f</del> ormed lipped channel and sigma sections under compression. Ce/Papers, 2021, 4, 1447-1456.                               | 0.3 | 0         |
| 49 | Lateral-torsional buckling of ferritic stainless steel beams in case of fire. WIT Transactions on Engineering Sciences, 2007, , .                                                 | 0.0 | Ο         |
| 50 | PARAMETRIC STUDY ON THE LATERAL TORSIONAL BUCKLING OF STAINLESS STEEL I BEAMS WITH CLASS 4<br>CROSS-SECTIONS IN CASE OF FIRE. Applications of Structural Fire Engineering, 0, , . | 0.3 | 0         |