Erez Lieberman Aiden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. Journal of Advanced Research, 2022, 42, 315-329.	4.4	20
2	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	124
3	Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation. PLoS Pathogens, 2022, 18, e1010288.	2.1	13
4	Somatic structural variant formation is guided by and influences genome architecture. Genome Research, 2022, 32, 643-655.	2.4	12
5	Gene architecture directs splicing outcome in separate nuclear spatial regions. Molecular Cell, 2022, 82, 1021-1034.e8.	4.5	26
6	A chromosome-level genome sequence assembly of the red raspberry (Rubus idaeus L.). PLoS ONE, 2022, 17, e0265096.	1.1	11
7	RedChIP identifies noncoding RNAs associated with genomic sites occupied by Polycomb and CTCF proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
8	Chromosome-length genome assembly and linkage map of a critically endangered Australian bird: the helmeted honeyeater. GigaScience, 2022, 11, .	3.3	8
9	The Australian dingo is an early offshoot of modern breed dogs. Science Advances, 2022, 8, eabm5944.	4.7	14
10	Response to Bakker et al Current Biology, 2022, 32, R358-R359.	1.8	1
11	Essential role of Cp190 in physical and regulatory boundary formation. Science Advances, 2022, 8, eabl8834.	4.7	27
12	A Chromosome-Length Assembly of the Hawaiian Monk Seal (Neomonachus schauinslandi): A History of "Genetic Purging―and Genomic Stability. Genes, 2022, 13, 1270.	1.0	1
13	H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nature Communications, 2021, 12, 719.	5.8	140
14	CTCF loss has limited effects on global genome architecture in Drosophila despite critical regulatory functions. Nature Communications, 2021, 12, 1011.	5.8	60
15	Chromosome-length genome assembly and structural variations of the primal Basenji dog (Canis lupus) Tj ETQq1	1 0 7843 1.2	14.rgBT /Ove
16	Delineating the Tnt1 Insertion Landscape of the Model Legume Medicago truncatula cv. R108 at the Hi-C Resolution Using a Chromosome-Length Genome Assembly. International Journal of Molecular Sciences, 2021, 22, 4326.	1.8	13
17	Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. ELife, 2021, 10, .	2.8	87
18	Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. FASEB Journal, 2021, 35, .	0.2	0

Erez Lieberman Aiden

2.8

43

#	Article	IF	CITATIONS
19	High-quality reference genome for Clonorchis sinensis. Genomics, 2021, 113, 1605-1615.	1.3	19
20	3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science, 2021, 372, 984-989.	6.0	132
21	CTCF looping is established during gastrulation in medaka embryos. Genome Research, 2021, 31, 968-980.	2.4	37
22	Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Research, 2021, 31, 981-994.	2.4	48
23	Chromosome Modeling on Downsampled Hi-C Maps Enhances the Compartmentalization Signal. Journal of Physical Chemistry B, 2021, 125, 8757-8767.	1.2	12
24	Genome-wide diversity in the California condor tracks its prehistoric abundance and decline. Current Biology, 2021, 31, 2939-2946.e5.	1.8	35
25	The Easter Egg Weevil (Pachyrhynchus) genome reveals syntenic patterns in Coleoptera across 200 million years of evolution. PLoS Genetics, 2021, 17, e1009745.	1.5	14
26	MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface. ELife, 2021, 10, .	2.8	21
27	Chromatin Is Frequently Unknotted at the Megabase Scale. Biophysical Journal, 2020, 118, 2268-2279.	0.2	26
28	Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nature Communications, 2020, 11, 6146.	5.8	35
29	Hi-C chromosome conformation capture sequencing of avian genomes using the BGISEQ-500 platform. GigaScience, 2020, 9, .	3.3	6
30	GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data. BMC Molecular and Cell Biology, 2020, 21, 60.	1.0	12
31	Chromosomalâ€level genome assembly of the scimitarâ€horned oryx: Insights into diversity and demography of a species extinct in the wild. Molecular Ecology Resources, 2020, 20, 1668-1681.	2.2	26
32	Large DNA Methylation Nadirs Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Molecular Cell, 2020, 78, 506-521.e6.	4.5	72
33	Analysis of Hi-C data using SIP effectively identifies loops in organisms from <i>C. elegans</i> to mammals. Genome Research, 2020, 30, 447-458.	2.4	70
34	Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus) Tj ETC	<u>)</u> مر <u>3</u> 0 rgl	BT 10verlock
35	The genome sequence of the Eurasian red squirrel, Sciurus vulgaris Linnaeus 1758. Wellcome Open Research, 2020, 5, 18.	0.9	3

Exploring chromosomal structural heterogeneity across multiple cell lines. ELife, 2020, 9, .

3

Erez Lieberman Aiden

#	Article	IF	CITATIONS
37	The genome sequence of the Eurasian river otter, Lutra lutra Linnaeus 1758. Wellcome Open Research, 2020, 5, 33.	0.9	6
38	Le génome, un fouillis bien ordonné. Pourlascience Fr, 2020, Nº 517 - novembre, 34-43.	0.0	0
39	A Pliable Mediator Acts as a Functional Rather Than an Architectural Bridge between Promoters and Enhancers. Cell, 2019, 178, 1145-1158.e20.	13.5	176
40	The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature, 2019, 573, 600-604.	13.7	126
41	Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress–Gene Response. Circulation, 2019, 139, 1937-1956.	1.6	36
42	Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Reports, 2019, 29, 3902-3915.e8.	2.9	33
43	Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nature Genetics, 2019, 51, 1664-1669.	9.4	631
44	Multiomic Profiling Identifies cis-Regulatory Networks Underlying Human Pancreatic Î ² Cell Identity and Function. Cell Reports, 2019, 26, 788-801.e6.	2.9	68
45	Three-D Codes in the Human Genome. Blood, 2019, 134, SCI-50-SCI-50.	0.6	0
46	The Energetics and Physiological Impact of Cohesin Extrusion. Cell, 2018, 173, 1165-1178.e20.	13.5	399
47	Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data. Cell Systems, 2018, 6, 256-258.e1.	2.9	271
48	Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature, 2018, 563, 501-507.	13.7	426
49	Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genetics, 2018, 14, e1007872.	1.5	209
50	Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nature Genetics, 2018, 50, 1140-1150.	9.4	139
51	Large DNA Methylation Canyons Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Blood, 2018, 132, 534-534.	0.6	0
52	De novo assembly of the <i>Aedes aegypti</i> genome using Hi-C yields chromosome-length scaffolds. Science, 2017, 356, 92-95.	6.0	1,513
53	De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12126-12131.	3.3	193
54	Cohesin Loss Eliminates All Loop Domains. Cell, 2017, 171, 305-320.e24.	13.5	1,454

#	Article	IF	CITATIONS
55	Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development. Molecular Cell, 2017, 67, 1037-1048.e6.	4.5	242
56	Genome Organization Drives Chromosome Fragility. Cell, 2017, 170, 507-521.e18.	13.5	311
57	Polycomb-mediated chromatin loops revealed by a subkilobase-resolution chromatin interaction map. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8764-8769.	3.3	150
58	Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation. Molecular Cell, 2017, 67, 566-578.e10.	4.5	174
59	Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13108-13113.	3.3	282
60	Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (Microcebus murinus). BMC Biology, 2017, 15, 110.	1.7	53
61	Transferable model for chromosome architecture. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12168-12173.	3.3	291
62	Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Systems, 2016, 3, 99-101.	2.9	1,199
63	Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Systems, 2016, 3, 95-98.	2.9	2,057
64	Deletion of <i>DXZ4</i> on the human inactive X chromosome alters higher-order genome architecture. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4504-12.	3.3	239
65	Chromatin Extrusion Explains Key Features of Loop and Domain Formation in Wildâ€ŧype and Engineered Genomes. FASEB Journal, 2016, 30, 588.1.	0.2	2
66	High Order Chromatin Structure Regulates Gene Expression in Hematopoietic Stem Cell Self-Renewal and Erythroid Differentiation. Blood, 2016, 128, 1033-1033.	0.6	0
67	Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6456-65.	3.3	1,464
68	Somatic Rearrangement in B Cells: It's (Mostly) Nuclear Physics. Cell, 2015, 162, 708-711.	13.5	14
69	A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell, 2014, 159, 1665-1680.	13.5	6,520
70	Nuclear Biology: What's Been Most Surprising?. Cell, 2013, 152, 1207-1208.	13.5	3
71	The expanding scope of DNA sequencing. Nature Biotechnology, 2012, 30, 1084-1094.	9.4	280
72	Quantitative Analysis of Culture Using Millions of Digitized Books. Science, 2011, 331, 176-182.	6.0	2,010

#	Article	IF	CITATIONS
73	Culturomics—Response. Science, 2011, 332, 36-37.	6.0	4
74	Zoom!. Science, 2011, 334, 1222-1223.	6.0	2
75	Quantifying the evolutionary dynamics of language. Nature, 2007, 449, 713-716.	13.7	346
76	Evolutionary dynamics on graphs. Nature, 2005, 433, 312-316.	13.7	1,044
77	Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. SSRN Electronic Journal, 0, , .	0.4	0
78	De novo chromosome-length assembly of the mule deer (Odocoileus hemionus) genome. GigaByte, 0, 2021, 1-13.	0.0	5
79	A panâ€genome and chromosomeâ€length reference genome of narrowâ€leafed lupin (<i>Lupinus) Tj ETQq1 1 (Journal, 0, , .</i>	0.784314 2.8	rgBT /Over 9